用户名: 密码: 验证码:
合肥城郊典型农业小流域土壤磷形态及淋失风险分析
详细信息   下载全文 | 推荐本文 |
摘要
为掌握合肥城郊二十埠河某农业小流域土壤磷形态及淋失风险水平,在汇水区采集132份表层土壤样.在分析测试基础上,利用ArcGIS软件中Kriging插值模拟技术,解析总磷(TP)、生物有效性磷(Bio-P)的空间分布特征及土壤有效磷(OlsenP)和易解吸磷(CaCl_2-P)的空间变异性;剖析土壤磷素富集水平;并通过确定土壤磷素的淋失临界值,评估汇水区土壤磷素流失风险.结果表明,汇流区土壤TP和Bio-P含量较高的采样点位主要出现在左支流的上游和两支流交汇处的右侧局部区域;土壤磷形态富集系数由大到小排序为:Ca-P(15.01)>OP(4.16)>TP(3.42)>IP(2.94)>Ex-P(2.76)>Fe/Al-P(2.43)>Olsen-P(2.34);土壤有效磷淋失临界值为18.388 mg·kg~(-1),超过临界值的样本数占样本总数的16.6%,高淋失风险区主要分布在左支流上游、右支流中游及两支流汇流处下游的局部地区.
        To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban,Chaohu Lake basin,132 surface soil samples were collected from the catchment area.The spatial distribution of total phosphorus(TP) and bio-available phosphorus(Bio-P),and the spatial variability of soil available phosphorus(Olsen-P) and easy desorption phosphorus(CaCl_2-P) were analyzed using the Kriging technology of ArcGIS after speciation analysis of soil phosphorus.Moreover,the enrichment level of soil phosphorus was studied,and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus.The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged.The enrichment rates of soil phosphorus forms were arranged as follows:Ca-P(15.01) >OP(4.16) >TP(3.42) > IP(2.94) > Ex-P(2.76) > Fe/A1-P(2.43)> Olsen-P(2.34).The critical value of Olsen-P leaching was 18.388 mg·kg~(-1),and the leaching samples with values higher than the threshold value accounted for 16.6%of total samples.Generally,the high-risk areas mainly occurred in the upstream of the left tributary,the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.
引文
[1]Delpla I,Baurès E,Jung A V,et al.Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas[J].Science of the Total Environment,2011,409(9):1683-1688.
    [2]Smith K A,Jackson D R,Withers P J A.Nutrient losses by surface run-off following the application of organic manures to arable land.2.Phosphorus[J].Environmental Pollution,2001,112(1):53-60.
    [3]乔飞,孟伟,郑丙辉,等.长江流域污染负荷核算及来源分析[J].环境科学研究,2013,26(1):80-87.
    [4]李如忠,邹阳,徐晶晶,等.瓦埠湖流域庄墓镇农田土壤氮磷分布及流失风险评估[J].环境科学,2014,35(3):1051-1059.
    [5]钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J].生态学报,2004,24(10):2275-2280.
    [6]Lemunyon J L,Gilbert R G.The concept and need for a phosphorus assessment tool[J].Journal of Production Agriculture,1993,6(4):483-496.
    [7]陆海明,尹澄清,王夏晖,等.于桥水库周边农业小流域氮素流失浓度特征[J].环境科学学报,2008,28(2):349-355.
    [8]Heckrath G,Brookes P C,Poulton P R,et al.Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J].Journal of Environmental Quality,1995,24(5):904-910.
    [9]周惠平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2702.
    [10]Ruttenberg K C.Development of a sequential extraction method for different forms of phosphorus in marine-sediments[J].Limnology and Oceanography,1992,37(7):1460-1482.
    [11]Heiri O,Lotter A F,Lemcke G.Loss on ignition as a method for estimating organic and carbonate content in sediments:reproducibility and comparability of results[J].Journal of Paleolimnology,2001,25(1):101-110.
    [12]Sánchez-AlcaláI,del Campillo M C,Torrent J.Extraction with0.01 M Ca Cl2underestimates the concentration of phosphorus in the soil solution[J].Soil Use and Management,2014,30(2):297-302.
    [13]陈璐,党廷辉,杨绍琼,等.黄土旱塬施肥对土壤颗粒组成及其有效磷富集的影响研究[J].水土保持学报,2011,25(3):151-153,159.
    [14]柏兆海,万其宇,李海港,等.县域农田土壤磷素积累及淋失风险分析——以北京市平谷区为例[J].农业环境科学学报,2011,30(9):1853-1860.
    [15]Hesketh N,Brookes P C.Development of an indicator for risk of phosphorus leaching[J].Journal of Environmental Quality,2000,29(1):105-110.
    [16]赵伟明,王艳艳,马嘉伟,等.临安山核桃林地土壤磷素状况及其淋失风险分析[J].浙江农业学报,2014,26(1):154-158.
    [17]张瑜,张黎明,周碧青,等.基于GIS技术的耕地有效磷富集与生态风险评价——以福建省泰宁县为例[J].农业环境科学学报,2015,34(2):326-336.
    [18]周慧平,高超,孙波,等.巢湖流域土壤全磷含量的空间变异特征和影响因素[J].农业环境科学学报,2007,26(6):2112-2117.
    [19]李如忠,李峰,周爱佳,等.巢湖十五里河沉积物氮磷形态分布及生物有效性[J].环境科学,2012,33(5):1503-1510.
    [20]Roger A,Libohova Z,Rossier N,et al.Spatial variability of soil phosphorus in the Fribourg canton,Switzerland[J].Geoderma,2014,217-218:26-36.
    [21]Wang Y Q,Zhang X C,Huang C Q.Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau,China[J].Geoderma,2009,150(1-2):141-149.
    [22]祝锦霞,许红卫,王珂,等.基于GIS和地统计学的低丘红壤地区三种土壤性质空间变异性研究[J].土壤,2008,40(6):960-965.
    [23]杨文,周脚根,焦军霞,等.亚热带丘陵小流域土壤有效磷空间变异与淋失风险研究[J].环境科学学报,2015,35(2):541-549.
    [24]聂敏,肖和艾,廖敦秀,等.亚热带可变电荷土壤磷素淋失临界点及其与土壤特性的关系[J].环境科学学报,2013,33(2):579-586.
    [25]王彩绒,胡正义,杨林章,等.太湖典型地区蔬菜地土壤磷素淋失风险[J].环境科学学报,2005,25(1):76-80.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700