地震作用下挡土墙位移模式的振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
设计并完成2个比尺1∶8的边坡大型振动台模型试验,通过水平向(X向)、竖直向(Z向)和水平竖直双向(XZ双向)3种激振方式,研究汶川波地震作用下重力式挡墙、桩板式挡墙、锚杆格构式框架和预应力锚索格构式框架护坡位移模式及变化特性,并且分析各支挡结构的抗震性能。研究表明:(1)X向或XZ双向激振下,重力式挡墙和桩板式挡墙在激振加速度峰值AXmax≤0.4 g时的永久位移,以及Z向激振下桩板式挡墙和预应力锚索框架护坡的永久位移可忽略不计;(2)X向激振下,当激振加速度峰值AXmax>0.4 g时,重力式挡墙位移模式为向土体方向滑动和绕墙踵向土体方向转动的耦合,且以滑动为主,而桩板式挡墙位移模式为向土体方向滑动。Z向激振下,当激振加速度峰值AZmax>0.267 g时,重力式挡墙位移模式为向土体方向滑动和绕墙踵向土体方向转动的耦合。XZ双向激振下,AXmax>0.4 g和AZmax>0.267 g时,重力式挡墙位移模式为向土体方向滑动与绕墙趾向土体外侧转动的耦合,且以转动为主,而桩板式挡墙位移模式则为离开土体向外侧滑动与绕基础向土体外侧转动的耦合,且以滑动为主;(3)X向和XZ双向激振下,预应力锚索框架和锚杆框架的位移模式相同,都是沿坡体向土体外侧及边坡下端移动。Z向激振下,当激振加速度峰值AZmax>0.267 g时,锚杆格构式框架护坡位移模式为向土体外侧和边坡上端移动逐渐转变为向土体方向和边坡上端移动;(4)X向或Z向激振下,桩板式挡墙抗震性能优于重力式挡墙,而XZ双向激振下,重力式挡墙抗震性能优于桩板式挡墙。无论哪种激振方式,预应力锚索格构式框架护坡抗震性能优于锚杆格构式框架护坡。
Two slope models with the geometric scale of 1∶8 were designed and two large-scale shaking table model tests were performed to study the seismic displacement modes,its characteristics and aseismic behavior of four retaining structures including gravity retaining wall,sheet-pile retaing wall,anchor lattice frame structure and prestressing anchor lattice frame under seismic loading and in three excitation directions including X-,Z-,and XZ-direction respectively.The results show that:(1) In X direction or XZ-direction excitation,the seismic permanent displacements of gravity retaining wall and sheet-pile retaining wall are negligible at the peak excitaion acceleration AXmax≤0.4 g.In Z-direction excitation,the seismic permanent displacements of sheet-pile retaining wall and prestressing anchor lattice frame are also negligible.(2) In X-direction excitation and at AXmax>0.4 g,the seismic displacement mode of gravity retaining wall is the slide-based coupling of the sliding to filling soil mass and the rotating inward about base,and the seismic displacement mode of sheet-pile retaining wall is the sliding to filling soil mass.In Z-direction excitation and at the peak excitation acceleration AZmax>0.267 g,the seismic displacement mode of gravity retaining wall is the coupling of the sliding to filling soil mass and the rotating inward about base.In XZ-direction excitation and at AXmax>0.4 g,and AZmax>0.267 g,the seismic displacement mode of gravity retaining wall is the rotation-based coupling of the sliding to filling soil mass and the rotating outward about base,and the seismic displacement mode of sheet-pile retaining wall is the slide-based coupling of the sliding from filling soil mass and the rotating outward about base.(3) In X-or XZ-direction excitation,the seismic displacement mode of prestressing anchor lattice frame is the translation of outward and lower of the slope and same as that of anchor lattice frame structure.In Z-direction excitation and at AZmax>0.267 g,the seismic displacement mode of the translation of outward and upper of the slope of anchor lattice frame structure is gradually transformed into the translation of inward and upper of the slope.(4) The aseismic performance of sheet-pile retaining wall is better than that of gravity retaining wall at X-or Z-direction excitation,but poor than that of gravity retaining wall in XZ-direction excitation.The aseismic performance of prestressing anchor lattice frame is better than that of anchor lattice frame structure at X-,Z-,and XZ-directions excitation.
引文
[1]李志强.重力式挡土墙抗震动力可靠度分析与基于位移法的抗震设计研究[博士学位论文][D].北京:北京交通大学,2007.(LIZhiqiang.Study on the aseismic dynamic reliability analysis anddesign based on the displacement method for the gravity type earth-retaining wall[Ph.D.Thesis][D].Beijing:Beijing Jiaotong University,2007.(in Chinese))
    [2]陈学良,陶夏新,陈宪麦,等.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(3):139–146.(CHEN Xueliang,TAO Xiaxin,CHEN Xianmai,et al.Review of study on seismic response of gravitytype retaining wall[J].Journal of Natural Disasters,2006,15(3):139–146.(in Chinese))
    [3]薛守义.高等土力学[M].北京:中国建材工业出版社,2007:126–135.(XUE Shouyi.Advancd soil mechanics[M].Beijing:ChinaBuilding Material Industry Publishing House,2007:126–135.(inChinese))
    [4]张军,王贻荪.确定挡土墙主动土压力分布的薄层分析法[J].湖南大学学报,1998,25(5):147–153.(ZHANG Jun,WANG Yisun.Determination of active earth pressure distribution against retainingwall by thin-layer method[J].Journal of Hunan University,1998,25(5):147–153.(in Chinese))
    [5]周健,彭述权,樊玲.刚性挡土墙主动土压力颗粒流模拟[J].岩土力学,2008,29(3):629–633.(ZHOU Jian,PENG Shuquan,FAN Ling.Particle flow simulation of active earth pressuredistribution on rigid retaining wall[J].Rock and Soil Mechanics,2008,29(3):629–633.(in Chinese))
    [6]BANG S.Active earth pressure behind retaining walls[J].Journal ofGeotechnical Engineering Division,1985,111(3):407–412.
    [7]FANG Y S,ISHIBASHI I.Static earth pressures with various wallmovements[J].Journal of Geotechnical Engineering Division,1986,112(3):317–333.
    [8]CHANG M F.Lateral earth pressures behind rotating walls[J].Canadian Geotechnical Journal,1997,34(4):498–509.
    [9]LING H I.Recent applications of sliding block theory to geotechnicaldesign[J].Soil Dynamics and Earthquake Engineering,2001,21(3):189–197.
    [10]CALTABIANO S,CASCONE E,MAUGERI M.Seismic stability ofretaining walls with surcharge[J].Soil Dynamics and EarthquakeEngineering,2000,20(5/8):469–476.
    [11]PSARROPOULOS P N,KLONARIS G,GAZETAS G.Seismic earthpressures on rigid and flexible retaining walls[J].Soil Dynamics andEarthquake Engineering,2005,25(7/10):795–809.
    [12]MYLONAKIS G,KLOUKINAS P,PAPANTONOPOULOS C.Analternative to the Mononobe-Okabe equations for seismic earthpressures[J].Soil Dynamics and Earthquake Engineering,2007,27(10):957–969.
    [13]SHERIF M A,FANG Y S.Dynamic earth pressures on rigid wallsrotating about the base[C]//Proceedings of the 8th World Conferenceon Earthquake Engineering.San Francisco:[s.n.],1984:993–1 000.
    [14]SHERIF M A,FANG Y S.Dynamic earth pressures on walls rotatingabout the top[J].Soils and Foundations,1984,24(4):109–117.
    [15]NAZARIAN H N,HADJIAN A H.Earthquake-induced lateral soilpressures on structures[J].Journal of the Geotechnical EngineeringDivision,1979,105(9):1 049–1 066.
    [16]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008:315–340.(HUANG Haohua.The design and applicationtechnology on earthquake simulation vibrating table[M].Beijing:Earthquake Press,2008:315–340.(in Chinese))
    [17]孔宪京,李永胜,邹德高,等.加筋边坡振动台模型试验研究[J].水力发电学报,2009,28(5):152–157.(KONG Xianjing,LIYongsheng,ZOU Degao,et al.Shaking table model tests on soil slopereinforced with geogrid[J].Journal of Hydroelectric Engineering,2009,28(5):152–157.(in Chinese))
    [18]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005:9–20.(LIUXiaosheng,WANG Zhongning,WANG Xiaogang,et al.Large-scaleshaking table model tests and dynamic analysis of concrete facerockfill dam[M].Beijing:China Water Power Press,2005:9–20.(inChinese))
    [19]IAI S.Similitude for shaking table tests on soil-structure-fluid modelin 1g gravitational field[J].Soils and Foundations,1989,29(1):105–118.
    [20]中华人民共和国国家标准编写组.GB5001—2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(The National StandardsCompilation Group of People′s Republic of China.GB5001—2001 Codefor seismic design of buildings[S].Beijing:China Architecture andBuilding Press,2010.(in Chinese))
    [21]中华人民共和国国家标准编写组.GB50111—2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.(The National StandardsCompilation Group of People′s Republic of China.GB50111—2006Code for seismic design of railway engineering[S].Beijing:ChinaPlanning Press,2006.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心