非自由液化场地地基动力性能大型振动台模型试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于1∶10模型大型振动台试验,研究非自由液化场地的地基动力性能。液化场地条件下,与自由场地基相比,非自由场地地基的自振频率明显加大、动力耗能作用提高较小。土层液化前且在小震输入下,地基动力变形的线性特征较突出,主要表现为对地震波的动力放大作用,加速度反应自下而上逐渐增大;土层完全液化后,地基加速度反应自下而上也逐渐增大,这是由于液化地基的层间剪切运动加快且加快的速率自下而上逐渐增大所致。地基孔压变化主要受两方面因素影响:一是随埋深减小,孔压减小,但孔压比增大;二是离桩距离越近,孔压和孔压比越大。土层液化前,输入波主要峰值过后,自下而上孔压消散逐渐减慢。较大震输入下,自下而上孔压有减小的趋势,但最大孔压比均很快达到液化孔压比;输入波主要峰值过后,孔压消散很缓慢,尤其是孔压消散随埋深减小越来越慢。试验中还出现瞬时负孔压的有趣现象,这也许是由于可液化土层发生瞬时膨胀作用所致。
On the basis of the large-scale shaking table 1∶10 scale model test,the dynamic property of foundation in unfreedom ground of liquefaction is studied.In ground of liquefaction,compared to freedom foundation,the self-vibration frequency of unfreedom foundation obviously increases,yet its property of dynamic energy dissipation improves a little.Before liquefaction of soil and in input of a small shake,the dynamic deformation of foundation mainly appears linear characteristics,which primarily exhibits in the amplification effect to earthquake waves,the response of acceleration gradually strengthens from bottom to top.After soil liquefied entirely,the response of foundation acceleration also gradually strengthens from bottom to top,which is that the shear movement between layers of liquefied foundation is accelerated and the increased speed of the shear movement is gradually accelerated from bottom to top.The variation of pore pressure in foundation is psimarily affected by following two factors: the first is that with depth decreasing, the pore pressure will decrease while the pore pressure ratio will increase; the second is that the smaller the distance to a pile,the bigger the pore pressure and pore pressure ratio.Before soil liquefied,and when the primary peak of inputted waves has gone,the dissipation of pore pressure becomes gradually slower from bottom to top.While inputting a bigger shake,the pore pressure is in the tendency of lowing from bottom to top,but the peak pore pressure ratio all arrives at the liquefaction pore pressure ratio,and when the primary peak of inputted waves has gone,the pore pressure dissipates very slowly,particularly the dissipation of pore pressure becomes slower and slower with the decrease of depth.In this test, it is occurred that an interesting phenomena of transient minus pore pressure is perhaps attributed to the transient shear swell effect of liquefaction soil.
引文
[1] 范立础,韦 晓.桩—土—结构动力相互作用试验研究现状[A].大型复杂结构的关键科学问题研究文集[C].大连:大连理工大学出版社,1999.170—178.
    [2] 凌贤长,王东升.液化场地桩—土—桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):51—59.
    [3] KAGAWA T,MINOWA C,ABE A.EDUS project(earthquake damage to underground structures)[A].12WCEE[C].Auckland:IAEE,2000.
    [4] KAWASHIMA K,UNJOH S.Impact of hanshin/awajieearthquake on seismic design and seismic strengthe ning of highway bridges[J].Struct.Eng./EarthquakeEng.,JSCE,1996,13(2):211—240.
    [5] GANVE T,YAMAZAKI F,ISHIZAK H, et al.Re sponse analysis of the higashi kobe bridge and sur rounding soil in the1995 hyogoken nanbu earthquake[J].EarthquakeEngng.Struct.Dyn.,1998,27(3):557—576.
    [6] TAMURA K.Seismic design of bridge foundation a gainst liquefaction induced ground flow[A].12WCEE[C].Auckland:IAEE,2000.
    [7] NAKAGAWA T.Experimental study on the soil pilestructure interaction by shaking table tests usinglarge scale laminar box[A].12WCEE[C].Auckland:IAEE,2000.
    [8] SUSUMU Y.Large scale shaking table tests on pilefoundations in liquefied ground[A].12WCEE [C].Auckland:IAEE,2000.
    [9] TAMURA S,SUZUKI Y,TSUCHIYA T,et al.Dy namic response and failure mechanisms of a pile foun dation during soil liquefaction by shaking table testwith a large scale laminar shear box[A].12WCEE[C].Auckland:IAEE,2000.
    [10] SATO M.Reproduction of a large scale1g test on un saturated sand deposits and pile foundations usingcentrifuge modelling[A].12WCEE [C].Auckland:IAEE,2000.
    [11] HATSUKAZU M.Dynamic behavior of pile founda tion in liquefaction process-shaking table tests utili zing big shear box[A].12WCEE [C].Auckland:IAEE,2000.
    [12] 楼梦麟,王文剑,朱 杉.土—结构体系振动台模拟试验中土层边界影响问题[J].地震工程与工程振动,2000,20(4):30—36.
    [13] 吕西林,陈跃庆,陈 波.结构—地基动力相互作用体系振动台模拟试验研究[J].地震工程与工程振动,2000,20(4):20—29.
    [14] 徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993,15(4):1—7.
    [15] 陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程,2002,18(4):47—54.
    [16] 石兆吉,王兰民.土壤动力特性———液化势及危害性评估[M].北京:地震出版社,1999.23—78.
    [17] 弓俊青,朱 啼.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法[J].中国公路学报,2001,14(4):42—46.
    [18] 宋一凡,贺拴海,曹继伟.基于能量原理的框架桥墩地震力分析[J].长安大学学报(自然科学版),2002,22(1):36—40.
    [19] 吕志涛.新世纪的土木工程与可持续发展[J].交通运输工程学报,2002,2(1):1—12.
    [20] 凌贤长,王 臣,王 成.液化场地桩—土—桥梁结构动力相互作用振动台试验模型相似设计方法[J].岩石力学与工程学报,2004,23(3):450—456.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心