黄草坪2~#隧道洞口段减震措施的大型振动台模型试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以国道318线黄草坪2#隧道进洞口段为原型,开展减震措施的大型振动台物理模型试验研究。首先系统介绍整个试验方案,包括试验装置、模型相似设计、模型箱体设计、相似材料设计、测试方案和地震输入及加载制度。然后,结合试验结果对洞口段减震设防区域进行研究,对横向减震层、纵向减震层以及加固围岩等措施的减震效果进行分析。试验结果表明,一般从模型洞口进入洞内120~150 cm(对应原型48~60 m)后,地震反应逐步趋于平稳,该范围是隧道减震设防的重点区域。设置横向减震层和系统锚杆加固围岩均能有效减少衬砌的动土压力和加速度反应,而且加固围岩的效果相对弱于设置横向减震层。通过合理设置纵向减震层间距,可将衬砌动应变量级降低至工程安全可接受水平。最后提出,对山岭隧道洞口段进行地震安全设计时,应该在上述认识基础上采取综合减震措施。
In order to study the effects of vibration-absorption measures in mountainous tunnel during earthquake,the entry portal area of Huangcaoping Tunnel No.2 located on National Highway No.318 is selected as the prototype to conduct large-scale shaking table test.Firstly,the whole test scheme is systematically introduced,including the test facility,the design of similarity ratio,the design of mould case,the similarity materials,the layout of measure sensors,the wave input and the load subsequence.Then,combining the test result analysis,the sector of the portal area that needs seismic protection is researched;and the effects of vibration-absorption measures such as lateral buffer layer,longitudinal buffer layer,and reinforcing surrounding rock with systematic bolts are analyzed.The results show that from the entry to the deep locations,the earthquake-induced effect decreases step by stepa,nd gets stable at the distance of 120–150 cm in model(48–60 m in prototype),which can be considered as the most important zone for aseismic design.The results also show that setting lateral buffer layer and reinforcing surrounding rock with bolts are both effective ways to decrease the dynamic earth pressure and the liner acceleration;but the latter is relatively weaker than the former.Properly setting longitudinal buffer layer can effectively reduce the dynamic strain to an acceptable level for project safety.Finallyt,he some suggestions are put forward that synthetical measures for vibration-absorption should be adopted for aseismic safety design of mountainous tunnel portal area on the basis of the above results.
引文
[1]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996,(5):7–16.(PAN Changshi.Study and summarization on the aseismic problem of tunnel and underground structure[J].World Tunnel,1996,(5):7–16.(in Chinese))
    [2]季倩倩,杨林德.地下铁道震害与震后修复措施[J].灾害学,2001,16(2):31–36.(JI Qianqian,YANG Linde.Seismic damage and restoration measures of subway[J].Journal of Catastrophology,2001,16(2):31–36.(in Chinese))
    [3]王秀英,刘维宁,张弥.地下结构震害类型及机制研究[J].中国安全科学学报,2003,13(11):55–58.(WANG Xiuying,LIU Weining,ZHANG Mi.Study on the categorization and mechanism of seismic damage of underground structures[J].China Safety Science Journal,2003,13(11):55–58.(in Chinese))
    [4]SONG C M,WOLF J P.Dynamic stiffness of unbounded medium based on damping-solvent extraction[J].Earthquake Engineering and Structural Dynamics,1994,23(2):169–181.
    [5]KANESHIRO J Y,POWER M.Empirical correlations of tunnel performance during earthquakes and aseismic aspects of tunnel design[C]//Proceedings of Conference on Lessons Learned from Recent Earthquakes.Turkey:[s.n.],1999:461–480.
    [6]POWER M S,ROSIDI D,KANESHIRO J.Screening,evaluation and retrofit design of tunnels[R].Buffalo,New York:National Center for Earthquake Engineering Research,1996:212–215.
    [7]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报,2001,23(4):494–498.(CHEN Jianyun,HU Zhiqiang,LIN Gao.3D seismic response study on large-scale underground group caverns[J].Chinese Journal of Geotechnical Engineering,2001,23(4):494–498.(in Chinese))
    [8]YOUSSEF M A H,JEFFREY J H,BIRGER S,et al.Seismic design and analysis of underground structures[J].Tunelling and Underground Space Technology,2001,16(4):247–293.
    [9]张栋梁,杨林德,谢永利,等.盾构隧道抗震设计计算的解析解[J].岩石力学与工程学报,2008,27(3):543–550.(ZHANG Dongliang,YANG Linde,XIE Yongli,et al.Analytical solution for aseismic design calculation of shield tunnels[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):543–550.(in Chinese))
    [10]邵根大,骆文海.强地震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学,1992,12(2):92–108.(SHAO Genda,LUO Wenhai.An investigation on aseismic behaviors of railway tunnel lining during strong earthquake[J].China Railway Science,1992,12(2):92–108.(in Chinese))
    [11]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,18(1):124–130.(ZHOU Depei.Dynamic behavior of portal part of tunnel subjected to strong ground motion[J].Earthquake Engineering and Engineering Vibration,1998,18(1):124–130.(in Chinese))
    [12]朱长安,高波,索然绪.强震区隧道洞口段振动台模型试验研究[J].现代隧道技术,2008,45(1):48–52.(ZHU Chang′an,GAO Bo,SUO Ranxu.Shaking table test for portal section of a tunnel in high-intensity seismic region[J].Modern Tunnel Technology,2008,45(1):48–52.(in Chinese))
    [13]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.(YANG Junjie.Similarity theory and structure model test[M].Wuhan:Wuhan University of Technology Press,2005.(in Chinese))
    [14]李育枢.山岭隧道地震动力响应及减震措施研究[博士学位论文][D].上海:同济大学,2006.(LI Yushu.Study on earthquake response and vibration-absorption measures of mountainous tunnel[Ph.D.Thesis][D].Shanghai:Tongji University,2006.(in Chinese))
    [15]来弘鹏,谢永利,杨晓华.公路隧道衬砌断面型式模型试验研究[J].岩土工程学报,2006,28(6):740–744.(LAI Hongpeng,XIE Yongli,YANG Xiaohua.Model test study on sectional form of highway tunnel lining[J].Chinese Journal of Geotechnical Engineering,2006,28(6):740–744.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心