桥梁结构基于性能的地震经济风险评估
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对我国桥梁结构的地震直接经济风险评估,建立基于性能的实用评估方法。规范设防下利用地震动参数确定地震危险性,将改进能力谱方法用于确定桥梁结构各损伤状态的地震需求水平,结合桥梁损伤脆弱性以及相应的损失比,使桥梁结构的地震经济风险定量表达为年预期损失形式。并借助OpenSees地震工程仿真平台应用本方法对一座城市轨道交通桥梁进行地震经济风险评估。结果表明,在设定地震下桥梁结构的地震直接经济风险损失主要来自年超越概率较高的轻微破坏和中等破坏,约占风险损失的82.4%;而运用增量动力分析对该评估方法的验证结果表明,该方法的评估结果与增量动力分析结果相比较为保守,二者相对误差随年超越概率的降低而趋于减小。
A performance-based practical procedure is established for the direct seismic financial risk assessment to bridge structure in China.According to the code seismic fortification,the seismic hazard is determined using the earthquake intensity measure and a modified capacity-spectrum method is applied to determine the seismic demand levels corresponding to the damage states of bridge structure.The seismic financial risk for bridge structure can be quantified with the expected annual loss by integrating bridge damage fragility and loss ratio with seismic hazard.The method is applied to assess the seismic financial risk to an urban rail transit bridge using OpenSees simulation platform.The result indicates that the direct seismic financial risk is mainly resulted from minus damage and intermediate damage with relative high annual frequency,which takes 82.4% of the total under scenario earthquakes.And the verification shows that the procedure provides a relative conservative outcome of the seismic financial risk assessment in such a way that the relative errors tend to decrease at lower annual frequencies in comparison with that from the incremental dynamic analysis.
引文
[1]MANDERJ B,BASOZ N.Seismic Fragility Curve Theory for Highway Bridges[C]//ELLIOTT W M,McDon-ough P.The 5th US Conference on Lifeline Earthquake Engineering.Seattle:American Society of Civil Engineers,1999.
    [2]SHINOZUKA M,FENG M Q,KI M H K,et al.Nonlinear Static Procedure for Fragility Curve Development[J].Journal of Engineering Mechanics,2000,126(12):1287-1295.
    [3]HWANG H,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,37(6):47-51.(HWANG H,LI UJingbo.Seismic Fragility Analysis of Reinforced Concrete Bridges[J].China Civil EngineeringJournal,2004,37(6):47-51.in Chinese)
    [4]MACKIE K R.Fragility-Based Seismic Decision Making for Highway Overpass Bridges[D].Berkeley:University ofCalifornia,2004.
    [5]DHAKAL R P,MANDER J B.Financial Risk Assessment Methodology for Natural Hazards[J].Bulletin of theNew Zealand National Society for Earthquake Engineering,2006,39(2):91-105.
    [6]MANDERJ B,DHAKAL R P,MASHIKO N,et al.Incremental Dynamic Analysis Applied to Seismic FinancialRisk Assessment of Bridges[J].Engineering Structures,2007,29(10):2662-2672.
    [7]DOWRICK DJ.Earthquake Risk Reduction[M].Chichester:John Wiley&Sons Inc,2003.
    [8]CORNELL C A,KRAWINKLER H.Progress and Challenges in Seismic Performance Assessment[EB/OL].[2000-04].http://peer.berkeley.edu/news/2000spring/performance.ht ml.
    [9]DEIERLEIN G G,KRAWINKLER H,CORNELL C A.A Framework for Performance-Based Earthquake Engi-neering[C]/7th Pacific Conference on Earthquake Engineering.Chirstchurch:New Zealand Society of EarthquakeEngineering Inc,2003.
    [10]VAMVATSIKOS D,CORNELL C A.Incremental Dynamic Analysis[J].Earthquake Engineering&Structural Dy-namics,2002,31(3):491-514.
    [11]CORNELL C A,JALAYER F,HAMBURGER R O,et al.Probabilistic Basis for 2000 Sac Federal Emergency Man-agement Agency Steel Moment Frame Guidelines[J].Journal of Structural Engineering,2002,128(4):526-533.
    [12]Federal Emergency Management Agency.I mprovement of Nonlinear Static Seismic Analysis Procedures,Report No.FEMA-440[R].Washington:Applied Technology Council,2005.
    [13]钟铁毅,杨风利,吴彬.铅芯橡胶支座隔震铁路简支梁桥双向地震响应分析[J].中国铁道科学,2007,28(3):38-43.(ZHONG Tieyi,YANG Fengli,WU Bin.Analysis of the Bidirectional Seismic Responses for Seismically IsolatedRail way Si mple Supported Beam Bridge by Lead Rubber Bearing[J].China Rail way Science,2007,28(3):38-43.in Chinese)
    [14]MELCHERS R E.Structural Reliability Analysis and Prediction[M].Chichester:John Wiley,1999.
    [15]KENNEDY R P,CORNELL C A,CAMPBELL R D,et al.Probabilistic Seismic Safety Study of an Existing NuclearPower Plant[J].Nuclear Engineering and Design,1980,59(2):315-338.
    [16]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 18208.4—2005地震现场工作第4部分:灾害直接损失评估[S].北京:中国标准出版社,2005.(General Administration Quality Supervison,Inspection and Quarantine of People′s Republic of China.Standardiza-tion Administration of People′s Republic of China.GB/T18208.4—2005 Post-Earthquake Field Works Part 4:As-sessment of Direct Loss[S].Beijing:Standards Press of China,2005.in Chinese)
    [17]中华人民共和国铁道部.GB50111—2006铁路工程抗震设计规范[S].北京:中国计划出版社,2009.(Minstry of Rail way of the People′s Republic of China.GB50111—2006 Code for Seismic Design of Rail way Engi-neering[S].Beijing:China Planning Press,2009)
    [18]MAZZONI S,MCKENNA F,SCOTT M H,et al.Open Systemfor Earthquake Engineering Si mulation User Com-mand-Language Manual Version 1.7.3[EB/OL].[2006-09].http://opensees.berkeley.edu.
    [19]MANDERJ B,PRIESTLEY MJ N,PARK R.Theoretical Stress-Strain Model for Confined Concrete[J].Journalof Structural Engineering ASCE,1988,114(8):1804-1825.
    [20]PRIESTLEY MJ N,SEIBLE F,CALVI G M.Seismic Design and Retrofit of Bridge[M].New York:John Wiley&Sons.Inc.,1996.
    [21]KOWALSKY MJ.Deformation Li mit States for Circular Reinforced Concrete Bridge Columns[J].Journal of Struc-tural Engineering,2000,126(8):0869-0878.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心