首都机场3号航站楼多维多点输入时程地震反应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
首都机场T3A航站楼南北方向最大尺寸约950m,东西方向最大尺寸约770m,结构在双方向尺度均很大,且结构体型不规则,有必要进行多维多点输入地震反应分析。本文首先介绍了多维多点输入地震反应分析的基本原理。对T3A航站楼采用时程分析法,进行了考虑行波效应的,水平双向多点输入地震反应分析。将多维多点输入结果与多维单点输入结果进行比较,得出结论为多点输入条件下扭转作用显著提高。对本工程而言,在行波速度从250m/s到800m/s的范围内,随波速减小地震反应增大。结构下部框架结构扭转振动呈剪切型分布,且多点输入影响随楼层升高而减小。多点输入影响较大构件一般为边柱、角柱。根据分析结果,对设计提出建议,针对工程不同结构类型和部位给出了考虑多点输入影响的地震作用效应调整系数,本工程地震作用效应调整系数在1.00~2.20之间。本文为大型建筑结构在设计中考虑多点输入影响提出了一种思路。
The new Capital Airport is irregular in structural form,with longest dimension of 950m from south to north of the terminal T3A,and 770m from east to west.Seismic analysis under multi-support and multi-dimension excitation needed to be carried out.This paper introduces the principle for multi-support and multi-dimension excitation seismic analysis.Time-history seismic analysis considering traveling effect and double direction input is carried out.The results from multi-support and multi-dimension seismic analysis have been compared with the results from single-support and multi-dimension analysis,the conclusion shows that the torsional effect increases obviously.For this project,when the traveling velocity changes from(250m/s) to 800m/s,the earthquake response of the structure increases with the slowing of the velocity.The torsional displacement of the frame structure presents shear pattern distribution;and the influence of multi-support excitation decreases with the increase of the floor.The members on which multi-support excitation has great effect are generally edge column or corner column.Some suggestions are put forward according to the analysis results.Adjustive coefficients considering multi-support excitation based on different positions and different structure types have been provided.Adjustive coefficients considering multi-support excitation are among 1.00-2.20 in this project. This article provides a method for the consideration of multi-support excitation in the large-sized structure in design.
引文
[1]Bogdanoff J L,GoldBerg J E,Schiff A J.The effect of groundtransmission time on the response of long structures[J].BullSeism Soc Am,1965,55(1):627-640.
    [2]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993,9(3):30-36.
    [3]Eurocode 8 Structures in seismic regions-design,Part 2:Bridges[S].Brussels:European Committee for Standardization,1994.
    [4]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.
    [5]Zerva A.Response of multi-span beams to spatially incoherentseismic ground motions[J].Earthquake Engineering andStructural Dynamics,1990,19(6):819-832.
    [6]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [7]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [8]范立础,袁万城,胡世德.上海南浦大桥纵向地震反应分析[J].土木工程学报,1992,25(3):2-8.
    [9]胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    [10]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983,11(2):1-9.
    [11]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [12]李建俊,林家浩,张文首,张宏宝.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-452.
    [13]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):61-68.
    [14]丁阳,王波.大跨度空间网格结构在地震行波作用下的响应[J].地震工程与工程振动,2002,22(5):71-76.
    [15]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心