输液管线中的地震动水压力及其影响因素
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
强烈地震作用可使地上输液管线中的液体产生较大的动水压力。基于模态叠加原理及地震反应谱理论,考虑流体可压缩性及管弹性,建立了输液管线地震动水压力的计算模型。根据流体所处边界条件的不同,给出两种典型工况下,管流地震动水压力的计算公式,并与依据附加质量模型计算所得的结果进行了比较。比较结果表明:管线长度对管流地震动水压力有显著的影响,对长管道而言,以附加质量模型求得的的地震动水压力高于考虑流体可压缩性时求得的地震动水压力,而对于短管道,情况刚好相反。另外,场地类型及管流所处工况对管流地震动水压力也有显著的影响,软土场地上的管理道。其内部流体地震动水压力明显高于硬土场地上的动水压力。
Based on mode superposition method and earthquake response spectrum theory,the calculation model of the earthquake-induced hydrodynamic pressures was established in consideration of fluid compressibility and pipe elasticity.According to different boundary conditions of the pipe flow,the formulae for the hydrodynamic pressures were obtained,and the results were compared with those obtained from additional mass model.The comparison result shows that the length of the pipeline has crucial influence on hydrodynamic pressures.For long pipeline,hydrodynamic pressures gotten from additional mass model are higher than those obtained from our proposed model,while the reverse situation is gotten for short pipeline.In addition,the types of the ground and the work condition of the pipe flow also have dramatic effect on the hydrodynamic pressures.The hydrodynamic pressure of the pipe flow on soft ground is higher than that on hard ground.
引文
[1]张立翔,黄文虎.弱约束管道系统水锤研究与进展[J].水动力学研究与进展A辑,1999,14(1):101—111.
    [2]郑源.刘德有,张健等.有压输水管道系统气液两相瞬变流研究综述[J].河海大学学报,2002,30(6):1—5.
    [3]陈贵清,郝婷月,吴班等.长输管道抗震研究的新进展[J].地震工程与工程震动.2006,26(3):193—196.
    [4]Bouaanani N,Paultre P,Proulx J.A closed-form formulation for earthquake-induced hydrodynamic pressure on gravity dams[J].Journal of Sound and Vibration,2003,261:573—582.
    [5]徐汉忠,吴旭光,马贞信.计算动水压力附加质量的韦氏公式的扩充[J].河海大学学报,1997,25(5):120—122.
    [6]Bayraktar A,Dumanoglu A A.The effect of the asynchronous ground motion on hydrodynamic pressures[J].Computers and Structures,1998,68:271—282.
    [7]徐汉忠.动水压力的附加质量矩阵的边界元分析[J].河海大学学报,1994,22(1):117—120.
    [8]Javier A,Li X.Hydrodynamic pressures on axisymmetric off-shore structures considering seabed flexibility[J].Computers and Structures,2001,79:2595—2606.
    [9]Chen Fuh-Bang.The significance of earthquake-induced dy-namic forces in coastal structures dedign[J].Ocean Engineer-ing,1995,22(4):301—315.
    [10]Stuart R,Shipley L,Ghose A,Hiremath M.Dynamic analy-sis of high-level waste storage tanks[J].Computers&Struc-tures,1995,56(2):415—424.
    [11]Fischer F D,Rammerstorfer F G.A refined analysis of slos-hing effects in seismically excited tanks[J].International Journal of Pressure Vessels and Piping,1999,76:693—709.
    [12]沈世杰.贮水池动水压力计算探讨[J].特种结构,1995,12(4):4—7.
    [13]Martin Wieland.Hydrodynamic pressures in penstocks,bot-tom outlets,plugs of diversion tunnels and gates of intake structures and spollways caused by earthquakes[J].Interna-tional Water Power and Dam Construction,2005,18—24.
    [14]水利部,电力工业部,东北勘查设计研究院.SL-95水利水电工程刚闸门设计规范[S].1995.
    [15]吴铁,莫海鸿,杨春.大型矩形渡槽-水耦合体系的动力性能分析[J].地震工程与工程振动,2004,24(4):137—142.
    [16]SL203-97,水工建筑物抗震设计规范[S].1997.
    [17]Eurocode8(2004):Design of structures for earthquake re-sistance,Part2:Bridges,European Standard,prEN1998-2:200X,Draft5,June2004.
    [18]建筑抗震设计规范(GB50011-2001).中华人民共和国国家标准[S].北京:中国建筑工业出版社,2001.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心