格构式框架护坡地震动位移模式的振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过1个比尺1:8的边坡大型振动台模型试验,研究锚杆格构式框架护坡在地震作用下的位移模式及其变化特性。模型试验以汶川波作为设计输入地震波,采用水平(X)向、竖直(Z)向和水平竖直(XZ)双向等3种激振方式。研究结果表明:(1)X向单向激振时,支挡结构的动位移模式为:当激振加速度峰值AXmax≤0.4 g时,离开土体向外侧平移;当AXmax=0.6 g时,绕支挡结构的下端向土体方向或边坡下方转动;当AXmax≥0.8 g时,挤向边坡土体方向移动,同时向边坡下方移动与绕支挡结构下端向土体方向转动的耦合。(2)Z向单向激振时,支挡结构的动位移模式为:当AZmax≤0.267 g时,离开土体向外侧移动,同时发生向边坡下方移动与绕结构下端向土体方向转动的耦合;当AZmax≥0.400 g时,挤向边坡土体方向平移与绕结构下端向土体方向转动的耦合。(3)XZ双向激振时,支挡结构的动位移模式为:离开土体向外侧平移,与绕结构下端向土体方向或边坡下方转动的耦合。
A slope model with the geometric scale of 1∶8 was designed and a large-scale shaking table model test was performed to study the seismic displacement mode of anchor lattice frame structure and its characteristics under Wenchuan earthquake loading with three excitation directions including X,Z,and XZ direction respectively.The results show that:(1) Under X direction excitation,the seismic displacement mode of the proposed retaining structure is the translation from filling soil mass at the peak exciting acceleration AXmax≤0.4 g,the rotation inward or lower slope about the lower of retaining structure at AXmax = 0.6 g,and the coupling of the translation to filling soil mass and the rotation inward about the lower of retaining structure at AXmax≥0.8 g.(2) Under Z direction excitation,the seismic displacement mode of the proposed retaining structure is the coupling of the translation from filling soil mass and the rotation inward about the lower of retaining structure at AZmax≤0.267 g,the coupling of the translation to filling soil mass and the rotation inward about the lower of retaining structure at AZmax≥0.400 g.(3) Under XZ direction excitation,the seismic displacement mode of the proposed retaining structure is the coupling of the translation from filling soil mass and the rotation inward about the lower of retaining structure.
引文
[1]薛守义.高等土力学[M].北京:中国建材工业出版社,2007:126-135.(XUE Shouyi.Advanced soil mechanics[M].Beijing:ChinaBuilding Materials Industry Publishing House Press,2007:126-135.(in Chinese))
    [2]张军,王贻荪.确定挡土墙主动土压力分布的薄层分析法[J].湖南大学学报,1998,25(5):147-153.(ZHANG Jun,WANG Yisun.Determination of active earth pressure distribution against retainingwall by thin-layer method[J].Journal of Hunan University,1998,25(5):147-153.(in Chinese))
    [3]MYLONAKIS G,KLOUKINAS P,PAPANTONOPOULOS C.Analternative to the Mononobe-Okabe equations for seismic earth pressures[J].Soil Dynamics and Earthquake Engineering,2007,27(10):957-969.
    [4]陈学良,陶夏新,陈宪麦,等.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(3):139-146.(CHEN Xueliang,TAO Xiaxin,CHEN Xianmai,et al.Review of study on seismic response of gravitytype retaining wall[J].Journal of Natural Disasters,2006,15(3):139-146.(in Chinese))
    [5]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008:315-340.(HUANG Haohua.The Design and applicationtechnology on earthquake simulation shaking table[M].Beijing:Earthquake Press,2008:315-340.(in Chinese))
    [6]TINAWI R,LEGER P,LECLERC M,et al.Seismic safety of gravitydams:from shake table experiments to numerical analyses[J].Journalof Structural Engineering,ASCE,2000,126(4):518-529.
    [7]LIN M L,WANG K L.Seismic slope behavior in a large-scale shakingtable model test[J].Engineering Geology,2006,86(2/3):118-133.
    [8]PITILAKIS D,DIETZ M,WOOD D M,et al.Numerical simulationof dynamic soil-structure interaction in shaking table testing[J].SoilDynamics and Earthquake Engineering,2008,28(6):453-467.
    [9]ANASTASOPOULOS I,GEORGARAKOS T,GEORGIANNOU V,et al.Seismic performance of bar-mat reinforced-soil retaining wall:Shaking table testing versus numerical analysis with modified kinematichardening constitutive model[J].Soil Dynamics and EarthquakeEngineering,2010,30(10):1 089-1 105.
    [10]LEE K Z Z,CHANG N Y,KO H Y.Numerical simulation ofgeosynthetic-reinforced soil walls under seismic shaking[J].Geotextilesand Geomembranes,2010,28(4):317-334.
    [11]文畅平,杨果林.地震作用下挡土墙位移模式的振动台试验研究[J].岩石力学与工程学报,2011,30(7):1 502-1 512.(WEN Changping,YANG Guolin.Large-scale shaking table tests study of seismicdisplacement mode of retaining structures under earthquake loading[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1 502-1 512.(in Chinese))
    [12]IAI S.Similitude for shaking table tests on soil-structure-fluid modelin 1 g gravitational field[J].Soils and Foundations,1989,29(1):105-118.
    [13]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005:9-20.(LIUXiaosheng,WANG Zhongning,WANG Xiaogang,et al.Large scaleshaking table model tests and dynamic analysis of concrete face rockfill dam[M].Beijing:China Water Power Press,2005:9-20.(inChinese))
    [14]中华人民共和国国家标准编写组.GB5001—2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.(The National StandardsCompilation Group of People′s Republic of China.GB5001—2001Code for seismic design of buildings[S].Beijing:China Architectureand Building Press,2001.(in Chinese))
    [15]中华人民共和国国家标准编写组.GB50111—2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.(The National StandardsCompilation Group of People′s Republic of China.GB50111—2006Code for seismic design of railway engineering[S].Beijing:ChinaPlanning Press,2006.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心