用户名: 密码: 验证码:
我国长江中下游水稻产区铅污染分区划分方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Classification methods for typical lead-contaminated rice production areas of the middle and lower Yangtze River in China
  • 作者:程菁靓 ; 赵龙 ; 杨彦 ; 侯红 ; 孙在金 ; 马瑾
  • 英文作者:CHENG Jing–liang;ZHAO Long;YANG Yan;HOU Hong;SUN Zai–jin;MA Jin;School of Environmental & Safety Engineering, Changzhou University;State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences;
  • 关键词:水稻产区划分 ; ; 富集系数 ; 物种敏感性分布
  • 英文关键词:classification of rice production area;;lead;;enrichment coefficient;;species sensitivity distribution
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:常州大学环境与安全工程学院;中国环境科学研究院环境基准与风险评估国家重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划项目(2017FYD0801101-2)~~
  • 语种:中文;
  • 页:76-84
  • 页数:9
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53;X503.231
摘要
以我国典型水稻产区——长江中下游平原为研究对象,在系统收集文献中20种水稻品种可食部位及其对应土壤中重金属铅(Pb)的协同调研数据基础上,综合考虑了水稻品种和土壤理化性质的影响,探讨了基于物种敏感性分布(SSD)法来划分水稻"宜产、限产、禁产"三区的方法,并以保护不同比例水稻品种反推出了各划分区的土壤Pb含量阈值。研究结果表明:该典型水稻产区的土壤pH与水稻Pb的富集系数间呈负相关,相关系数为-0.46(P<0.05),土壤有机碳(SOC)与水稻Pb的富集系数间呈正相关,相关系数为0.91(P<0.01),同时由pH和SOC两个变量所建立的回归模型可以解释水稻富集系数83.20%的变异;4种典型情景土壤中的水稻品种敏感性顺序分布基本一致;长江中下游平原区划分水稻"宜产、限产、禁产"三区的土壤Pb含量分别为≤14.81mg·kg-1,14.81~185.24 mg·kg-1和≥185.24 mg·kg-1。"宜产、限产、禁产"划分方法具有较好的科学性、普适性及可操作性,可推广至全国水稻产区的分区划分,将为我国农用地土壤的风险管理提供重要的技术支撑。
        We selected the middle and lower reaches of the Yangtze River basin, a typical rice-producing area in China, as the research object. We considered the effects of rice varieties and soil physico-chemical properties, and we investigated the techniques for classifying rice-producing areas as"suitable yield""restricted yield"and"forbidden yield"using the species sensitivity distribution(SSD)method.This decision was based upon the collection of collaborative survey data regarding lead contamination of 20 rice varieties and the corresponding soil. Furthermore, the soil lead content threshold for the three classification areas was derived to protect different proportions of rice variety. The results show that the soil pH of this typical rice-producing area negatively correlated to the lead enrichment coefficient of rice. The correlation coefficient was-0.46(P<0.05). The soil organic carbon was positively correlated to the lead enrichment coefficient of rice, and the correlation coefficient was 0.91(P<0.01). The regression model, derived from pH and soil organic carbon variables, can explain the 83.20% variation of rice enrichment factors. The sequence of rice variety sensitivity distribution in the four typical scenarios was consistent. The soil lead content in the middle and lower reaches of the Yangtze River basin was less than or equal to 14.81 mg·kg-1, 14.81~185.24 mg·kg-1and greater than or equal to 185.24 mg·kg-1. Generally, this classification method shows good rationality, universality, andoperability. Furthermore, it can be extended to the classification of rice-producing areas nationwide. It also provides important technical support opportunities for the risk management of agricultural land in China.
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业, 2014(5):10-11.The Ministry of Environmental Protection, The Ministry of Land and Resources. Report on the national soil contamination survey[J]. China Environmental Protection Industry, 2014(5):10-11.
    [2]王海慧,郇恒福,罗瑛,等.土壤重金属污染及植物修复技术[J].中国农学通报, 2009, 25(11):210-214.WANG Hai-hui, HUAN Heng-fu, LUO Ying, et al. Soil contaminated by heavy metals and its phytoremediation technology[J]. Chinese Agricultural Science Bulletin, 2009, 25(11):210-214.
    [3]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006, 38(5):505-508.LUO Yong-ming, TENG Ying. Status of soil pollution degradation and countermeasures in China[J]. Soil, 2006, 38(5):505-508.
    [4]李广云,曹永富,赵书民,等.土壤重金属危害及修复措施[J].山东林业科技, 2011, 41(6):96-101.LI Guang-yun, CAO Yong-fu, ZHAO Shu-min, et al. Review of hazards induced by soil contamination of heavy metals and remediation techniques[J]. Shandong Forestry Science and Technology, 2011, 41(6):96-101.
    [5]安晨昕.基于As、Pb、F浓度变化对水稻品质及土壤性质的影响研究[D].沈阳:沈阳农业大学, 2016.AN Chen-xin. Research on the effect of rice quality and soil property based on the As, Pb, F concentration change[D]. Shenyang:Shenyang Agricultural University, 2016.
    [6]钟静,饶胜,刘杉,等.铅对水稻种子萌发和幼苗生长的影响[J].湖北农业科学, 2016, 55(5):1109-1111.ZHONG Jing, RAO Sheng, LIU Shan, et al. Effects of lead on seed germination and seedling growth of rice[J]. Hubei Agricultural Sciences,2016, 55(5):1109-1111.
    [7]马孟莉,卢丙越,苏一兰,等.铜、铅、镉对不同水稻品种种子萌发的影响[J].江苏农业科学, 2015, 43(4):79-81.MA Meng-li, LU Bing-yue, SU Yi-lan, et al. Effects of copper, lead and cadmium on seed germination of different varieties of rice[J]. Journal of Jiangsu Agricultural Sciences, 2015, 43(4):79-81.
    [8]邹继颖,刘辉. Cr6+、Pb2+污染对水稻幼苗生长发育的影响[J].河南农业科学, 2014, 43(2):31-34.ZOU Ji-ying, LIU Hui. Effects of chromium and lead pollution on growth and development of rice seedling[J]. Journal of Henan Agricultural Sciences, 2014, 43(2):31-34.
    [9] Liu J G, Li K Q, Xu J K, et al. Lead toxicity, uptake, and translocation in different rice cultivars[J]. Plant Science, 2003, 165(4):793-802.
    [10]范中亮,季辉,杨菲,等.不同土壤类型下Cd和Pb在水稻籽粒中累积特征及其环境安全临界值[J].生态环境学报, 2010, 19(4):792-797.FAN Zhong-liang, JI Hui, YANG Fei, et al. Accumulation characteristics of Cd and Pb in rice grain and their security threshold values in paddy field under different soil types[J]. Chinese Journal of Eco-Environment, 2010, 19(4):792-797.
    [11] Chen W P, Li L Q, Chang A C, et al. Characterizing the solid solution partitioning coefficient and plant uptake factor of As, Cd, and Pb in California croplands[J]. Agr Ecosyst Environ, 2009, 129(1/2/3):212-220.
    [12]龚伟群,李恋卿,潘根兴,等.杂交水稻对Cd的吸收与籽粒积累:土壤和品种的交互影响[J].环境科学, 2006, 27(8):1647-1653.GONG Wei-qun, LI Lian-qing, PAN Gen-xing, et al. Cd uptake and accumulation in grains by hybrid rice in two paddy soils:Interactive effect of soil type and cultivars[J]. Environmental Science, 2006, 27(8):1647-1653.
    [13] Provoost J, Cornelis C, Swartjes F. Comparison of soil clean-up standards for trace elements between countries:Why do they differ?[J].Soils Sediments, 2006, 6(3):173-181.
    [14]肖细元,陈同斌,廖晓勇,等.我国主要蔬菜和粮油作物的砷含量与砷富集能力比较[J].环境科学学报, 2009, 29(2):291-296.XIAO Xi-yuan, CHEN Tong-bin, LIAO Xiao-yong, et al. Comparison of concentrations and bioconcentration factors of arsenic in vegetables, grain and oil crops in China[J]. Journal of Environmental Science, 2009, 29(2):291-296.
    [15]秦榕璘,李元,祖艳群,等.不同基因型玉米品种对Pb的富集特征[J].农业资源与环境学报, 2016, 33(3):268-275.QIN Rong-lin, LI Yuan, ZU Yan-qun, et al. Accumulation characteristics of Pb by Zea mays of different genotyoes[J]. Journal of Agricultural Resources and Environment, 2016, 33(3):268-275.
    [16]陈波宇,郑斯瑞,牛希成,等.物种敏感度分布及其在生态毒理学中的应用[J].生态毒理学报, 2010, 5(4):491-497.CHEN Bo-yu, ZHENG Si-rui, NIU Xi-cheng, et al. Species sensitivity distribution and its application in ecotoxicology[J]. Journal of Ecotoxicology, 2010, 5(4):491-497.
    [17]刘亚莉,谢玉为,张效伟,等.应用物种敏感性分布评价敌敌畏对淡水生物的生态风险[J].生态毒理学报, 2016, 11(2):531-538.LIU Ya-li, XIE Yu-wei, ZHANG Xiao-wei, et al. Assessing ecological risks of dichlorvos to freshwater organisms by species sensitivity distribution[J]. Journal of Ecotoxicology, 2016, 11(2):531-538.
    [18] Posthuma L, Traas T P, Suter G W. Species sensitivity distributions in ecotoxicology[M]. Boca Raton:Lewis Publishers CRC Press, 2002:3-9.
    [19] Shao Q. Estimation for hazardous concentrations based on NOEC toxicity data:An alternative approach[J]. Environmetrics, 2000, 11(5):583-595.
    [20]王小庆,李波,马义兵,等.土壤中镍、铜植物毒性预测模型的种间外推[J].生态毒理学报, 2013, 8(1):77-84.WANG Xiao-qing, LI Bo, MA Yi-bing, et al. Cross-species extrapolation of phytotoxicity prediction models for nickel and copper added to soil[J]. Journal of Ecotoxicology, 2013, 8(1):77-84.
    [21] Staples C A, Woodburn K B, Klecka G M, et al. Comparison of four species sensitivity distribution methods to calculate predicted no effect concentrations for bisphenol[J]. Human and Ecological Risk Assessment, 2008, 14(3):455-478.
    [22]王小庆,韦东普,黄占斌,等.物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J].农业环境科学学报, 2012, 31(1):92-98.WANG Xiao-qing, WEI Dong-pu, HUANG Zhan-bin, et al. Application of species sensitivity distribution in deriving of ecological thresholds for nickel in soils[J]. Journal of Agro-Environment Science, 2012,31(1):92-98.
    [23]杜建国,赵佳懿,陈彬,等.应用物种敏感性分布评估重金属对海洋生物的生态风险[J].生态毒理学报, 2013, 8(4):561-570.DU Jian-guo, ZHAO Jia-yi, CHEN Bin, et al. Assessing of ecological risks of heavy metals to marine organisms by species sensitivity distributions[J]. Journal of Ecotoxicology, 2013, 8(4):561-570.
    [24]李志涛,王夏晖,赵玉杰,等.南方典型区域水稻镉富集系数差异影响因素探析[J].环境科学与技术, 2017, 40(10):1-7.LI Zhi-tao, WANG Xia-hui, ZHAO Yu-jie, et al. Analysis of the difference and causes in rice cadmium uptake factor in typical south region[J]. Environmental Science and Technology, 2017, 40(10):1-7.
    [25]唐非,雷鸣,唐贞,等.不同水稻品种对镉的积累及其动态分布[J].农业环境科学学报, 2013, 32(6):1092-1098.TANG Fei, LEI Ming, TANG Zhen, et al. Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice(Oryza sativa L.)[J]. Journal of Agro-Environment Science, 2013, 32(6):1092-1098.
    [26]周歆,周航,胡淼,等.不同杂交水稻品种糙米中重金属Cd、Zn、As含量的差异研究[J].中国农学通报, 2013, 29(11):145-150.ZHOU Xin, ZHOU Hang, HU Miao, et al. The difference of Cd, Zn and As accumulation in different hybrid rice cultivars[J]. Chinese Agricultural Science Bulletin, 2013, 29(11):145-150.
    [27] Zhou H, Zeng M, Zhou X, et al. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice(Oryza sativa L.)cultivars[J]. Plant and Soil, 2015, 386(1/2):317-329.
    [28]李正文.镉处理下不同水稻品种对两种土壤中铅、镉的吸收及其生育期动态[D].南京:南京农业大学, 2003.LI Zheng-wen. Uptake of Pb and Cd by two rice cultivars in two soils differing in physic-chemical properties under spiked Cd treatment and its dynamics in growing period[D]. Nanjing:Nanjing Agricultural University, 2003.
    [29]程旺大.水稻籽粒有毒重金属含量的基因型和环境效应研究[D].杭州:浙江大学, 2004.CHENG Wang-da. Genotypic and environmental effect of toxic heavy metal concentrations in rice grains[D]. Hangzhou:Zhejiang University, 2004.
    [30]彭华. Cd、Pb低吸收积累水稻品种筛选研究[D].长沙:湖南农业大学, 2009.PENG Hua. Selection of rice varieties with low absorption and accumulation of Cd and Pb[D]. Changsha:Hunan Agricultural University,2009.
    [31]黄德乾,王玉军,汪鹏,等.三种不同类型土壤上水稻对Cu、Pb和Cd单一及复合污染的响应[J].农业环境科学学报, 2008, 27(1):46-49.HUANG De-qian, WANG Yu-jun, WANG Peng, et al. Response of rice in three types of soils to Cu, Pb and Cd with single and combined pollution[J]. Journal of Agro-Environment Science, 2008, 27(1):46-49.
    [32]吴亮,孙波.不同品种对水稻铅汞耐性和富集能力的影响[J].土壤, 2014, 46(6):1061-1068.WU Liang, SUN Bo. Effects of rice cultivars on their tolerance and accumulation for Pb and Hg pollution[J]. Soil, 2014, 46(6):1061-1068.
    [33]王小玲,刘腾云,幸学俊,等.6个水稻品种对Cr、As、Zn、Pb和Cu吸收积累的差异性[J].江西农业大学学报, 2016, 38(6):1009-1016.WANG Xiao-ling, LIU Teng-yun, XING Xue-jun, et al. Differences in the uptake and accumulation of Cr,As,Zn,Pb and Cu from soil among six rice cultivars[J]. Journal of Jiangxi Agricultural University,2016, 38(6):1009-1016.
    [34]陈慧茹,董亚玲,王琦,等.重金属污染土壤中Cd、Cr、Pb元素向水稻的迁移累积研究[J].中国农学通报, 2015, 31(12):236-241.CHEN Hui-ru, DONG Ya-ling, WANG Qi, et al. Distribution and transportation of Cd, Cr, Pb in rice with contamination in soil[J]. Chinese Agricultural Science Bulletin, 2015, 31(12):236-241.
    [35]陈志德,仲维功,王军,等.胁迫和对照条件下水稻品种铅积累的差异[J].农业环境科学学报, 2009, 28(5):967-971.CHEN Zhi-de, ZHONG Wei-gong, WANG Jun, et al. Difference of accumulation in rice cultivars under Pb stress and the control[J]. Journal of Agricultural Environmental Science, 2009, 28(5):967-971.
    [36] Hu Y, Huang Y C, Liu Y X, et al. Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants[J]. Plant and Soil, 2014, 384(1/2):131-140.
    [37] Deng Y S, Xia D, Cai C F, et al. Effects of land uses on soil physicchemical properties and erodibility in collapsing-gully alluvial fan of Anxi County, China[J]. Journal of Integrative Agriculture, 2016, 15(8):1863-1873.
    [38] Weng L P, Wolthoorn A, Lexmond T M, et al. Understanding the effects of soil characteristics on phtotoxicity and bioavailability of nickel using speciation models[J]. Environmental Science&Technology,2004, 38(1):156-162.
    [39] Smolders E, Buekers J, Oliver I, et al. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils[J]. Environmental Toxicology and Chemistry, 2004, 23(11):2633-2640.
    [40]李波,马义兵,刘继芳,等.西红柿铜毒害的土壤主控因子和预测模型研究[J].土壤学报, 2010, 47(4):665-673.LI Bo, MA Yi-bing, LIU Ji-fang, et al. Major soil controlling copper toxicity to tomato in a wide range of Chinese soils and the predictable models[J]. Journal of Soil Science, 2010, 47(4):665-673.
    [41]李波.外源重金属铜、镍的植物毒害及预测模型研究[D].北京:中国农业科学院, 2010.LI Bo. The phytotoxicity of added copper and nickel to soils and predictive models[D]. Beijing:Chinese Academy of Agricultural Sciences, 2010.
    [42]王小庆,韦东普,黄占斌,等.物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J].环境科学学报, 2013, 33(6):1787-1794.WANG Xiao-qing, WEI Dong-pu, HUANG Zhan-bin, et al. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Journal of Environmental Science, 2013, 33(6):1787-1794.
    [43]王琳,杜瑞英,王旭,等.不同品种稻米重金属富集差异研究[J].热带农业科学, 2015, 35(6):56-81.WANG Lin, DU Rui-ying, WANG Xu, et al. Difference in heavy metals enrichment of different varieties of rice[J]. Journal of Tropical Agriculture, 2015, 35(6):56-81.
    [44]雷炳莉,黄圣彪,王子健.生态风险评价理论和方法[J].化学进展,2009, 21(2/3):350-358.LEI Bing-li, HUANG Sheng-biao, WANG Zi-jian. Theories and methods of ecological risk assessment[J]. Progress in Chemistry, 2009,21(2/3):350-358.
    [45]吴丰昌,冯承莲,曹宇静,等.锌对淡水生物的毒性特征与水质基准的研究[J].生态毒理学报, 2011, 6(4):367-382.WU Feng-chang, FENG Cheng-lian, CAO Yu-jing, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria[J]. Journal of Ecotoxicology, 2011, 6(4):367-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700