用户名: 密码: 验证码:
IDEALIZED SIMULATIONS OF THE INNER CORE BOUNDARY LAYER STRUCTURE IN A LANDFALLING TROPICAL CYCLONE. PART Ⅰ: KINEMATIC STRUCTURE
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:IDEALIZED SIMULATIONS OF THE INNER CORE BOUNDARY LAYER STRUCTURE IN A LANDFALLING TROPICAL CYCLONE. PART Ⅰ: KINEMATIC STRUCTURE
  • 作者:GABRIEL ; J.WILLIAMS ; JR.
  • 英文作者:GABRIEL J.WILLIAMS JR.;Department of Physics and Astronomy,College of Charleston;
  • 英文关键词:hurricane;;tropical cyclone;;landfalling hurricane;;tropical cyclone boundary layer
  • 中文刊名:Tropical Cyclone Research and Review
  • 英文刊名:热带气旋研究与评论(英文版)
  • 机构:Department of Physics and Astronomy,College of Charleston;
  • 出版日期:2019-06-15
  • 出版单位:Tropical Cyclone Research and Review
  • 年:2019
  • 期:02
  • 语种:英文;
  • 页:4-24
  • 页数:21
  • ISSN:2225-6032
  • 分类号:P444
摘要
The effects of coastal topography and coastal location in the distribution of boundary layer winds in the inner core of mature tropical cyclones are examined using a high-resolution multi-level model. In these numerical simulations, the evolution of the tropical cyclone boundary layer(TCBL) is studied in storm-relative coordinates, and in lieu of an actual steering current moving the model vortex, the position of the land-sea interface was shifted through the grid domain at a constant speed with separate surface boundary conditions specified over the land and ocean areas. It is shown that the presence of a coastal boundary produces land-induced asymmetries(along with an internal boundary layer) due to the asymmetric structure of surface drag. This land-induced asymmetry is found in both the azimuthal and radial wind field at landfall. For a moving storm, nonlinear advective interactions between storm-induced asymmetries and land-induced asymmetries can generate a lowlevel vorticity band ahead of the hurricane. When the storm motion vector has a component that is perpendicular to the coastal boundary, the interaction between this band and the mean vortex leads to a temporary weakening and re-intensification cycle. Furthermore, it is shown that the relative magnitude of the land-induced asymmetry depends upon the terrain slope and the terrain height such that the land-induced asymmetry dominates over the motion-induced asymmetry for elevated terrain. These results underscore the specific differences in boundary layer evolution and intensity evolution for hurricanes interacting with complex topographical features.
        The effects of coastal topography and coastal location in the distribution of boundary layer winds in the inner core of mature tropical cyclones are examined using a high-resolution multi-level model. In these numerical simulations, the evolution of the tropical cyclone boundary layer(TCBL) is studied in storm-relative coordinates, and in lieu of an actual steering current moving the model vortex, the position of the land-sea interface was shifted through the grid domain at a constant speed with separate surface boundary conditions specified over the land and ocean areas. It is shown that the presence of a coastal boundary produces land-induced asymmetries(along with an internal boundary layer) due to the asymmetric structure of surface drag. This land-induced asymmetry is found in both the azimuthal and radial wind field at landfall. For a moving storm, nonlinear advective interactions between storm-induced asymmetries and land-induced asymmetries can generate a lowlevel vorticity band ahead of the hurricane. When the storm motion vector has a component that is perpendicular to the coastal boundary, the interaction between this band and the mean vortex leads to a temporary weakening and re-intensification cycle. Furthermore, it is shown that the relative magnitude of the land-induced asymmetry depends upon the terrain slope and the terrain height such that the land-induced asymmetry dominates over the motion-induced asymmetry for elevated terrain. These results underscore the specific differences in boundary layer evolution and intensity evolution for hurricanes interacting with complex topographical features.
引文
Barnes,G.M and M.D.Powell,1995:Evolution of the inflow boundary layer of Hurricane Gilbert(1988).Mon.Wea.Rev.,123,2348-2368.
    Barnes,G.M.,E.J.Zipser,D.Jorgensen,and F.Marks,1983:Mesoscale and convective structure of a hurricane rainband.J.Atmos.Sci.,40,2125-2137.
    Blackwell,K.G.,2000:The evolution of Hurricane Danny(1997)at landfall:Doppler-observed eyewall replacement,vortex contraction/intensification,and low-level wind maxima.Mon.Wea.Rev.,128,4002-4016.
    Bryan,G.H.and R.Rotunno,2009:The maximum intensity of tropical cyclones in axisymmetric numerical model simulations.Mon.Wea.Rev.,137,1770-1789.
    Chen,Y.and M.K.Yau,2003:Asymmetric structures in a simulated landfalling hurricane.J.Atmos.Sci.,60,2294-2312.
    Dodge,P.,S.Houston,W.C.Lee,J.Gamache,and F.D.Marks,1999:Windfields in Hurricane Danny(1997)at landfall from combined WSR-88D and airborne Doppler radar data.Preprints,23rd Conf on Hurricane and Tropical Meteorology,Dallas,TX,Amer.Meteor.Soc.61-62.
    Dunion,J.,2011:Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere.J.Climate,24,893-908.
    Fairall C.W.,J.D.Kepert,and G.J.Holland,1994:The effect of sea spray on surface energy transports over the ocean.Global Atmos.Ocean Syst,2,121-142.
    Franklin,J.L.,M.L.Black,and K.Valde,2003:GPS dropwindsonde wind profiles in hurricanes and their operational implications.Wea.Forecasting,18,32-44.
    Geerts,B.,G.M.Heymsfield,L.Tian,J.B.Halverson,A.Guillory,and M.I.Mejia,2000:Hurricane Georges’s landfall in the Dominican Republic:Detailed airborne Doppler radar.Bull.Amer.Meteor.Soc.,81,999-1018.
    Hirth,B.D.,J.L.Schroeder,and C.C.Weiss,2012:Research radar analyses of the internal boundary layer over Cape Canaveral,Florida during the landfall of Hurricane Frances(2004).Wea.and Forecasting.,27,1349-1372.
    Kepert,J.,2001:The dynamics of boundary layer jets within the tropical cyclone core:Part I:Linear theory.J.Atmos.Sci.58,2469-2484.
    Kepert,J.,2002:The wind-field structure of the tropical cyclone boundary layer.Ph.D Thesis,Dept.of Mathematics and Statistics,Monash University,350 pp.
    Kepert,J.and Y.Wang,2001:The dynamics of boundary layer jets within the tropical cyclone core.Part II:Nonlinear enhancement.J.Atmos.Sci.,58,2485-2501.
    Knupp,K.R,J.Walters,and E.W.McCaul,Jr.,2000:Doppler profile observations of Hurricane Georges at landfall.Geophys.Res.Lett.27,3361-3364.
    Knupp,K.R.,J.Walters,and M.Biggerstaff,2006:Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle.J.Atmos.Sci.,63,234-251.
    Louis,J.F.,M.Tiedtke,and J.F.Geleyn,1982:A short history of the operational PBL parameterization at ECMWF.In:Proceedings of ECMWF workshop on planetary boundary layer parameterization.ECMWF,Reading,UK,pp 59-79.
    Marks,F.D.Jr.and L.K.Shay,1998:Landfalling tropical cyclones:Forecast problems and associated research opportunities.Bull.Amer.Meteor.Sci.,70,305-323.
    Moss,M.S.and F.J.Merceret,1976:A note on several low-level features of Hurricane Eloise(1975).Mon.Wea.Rev.,104,967-971.
    Powell,M.D.,1982:The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall.Mon.Wea.Rev.,110,1912-1932.
    Powell,M.D.,1987:Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia(1983)at landfall.Mon.Wea.Rev.,115,75-99.
    Powell,M.D.,1990a:Boundary layer structure and dynamics in outer hurricane rainbands.Part I:Mesoscale rainfall and kinematic structure.Mon.Wea.Rev.118,891-917.
    Powell,M.D.,1990b:Boundary layer structure and dynamics in outer hurricane rainbands.Part II:Downdraft modification and mixed layer recovery..Mon.Wea.Rev.118,918-938.
    Powell,M.D.,P.D.Dodge,and M.L.Black,1991:The landfall of Hurricane Hugo in the Carolinas:Surface wind distribution.Wea.Forecasting,6,379-399.
    Powell,M.D.and S.H.Houston,1998:Surface wind fields of1995 Hurricanes Erin,Opal,Luis,Marilyn,and Roxanne at landfall.Mon.Wea.Rev.126,1259-1273.
    Schwendike,J.and J.D.Kepert,2008:The boundary layer winds in Hurricane Danielle(1998)and Isabel(2003).Mon.Wea.Rev.,136,3168-3192.
    Schneider,R.and G.M.Barnes,2005:Low-level kinematic,thermodynamics,and reflectivity fields associated with Hurricane Bonnie(1998)at landfall.Mon.Wea.Rev.133,3243-3259.
    Smagorinsky,J.S.,S.Manabe,and J.L.Holloway,Jr.,1965:Numerical results from a nine-level general circulation model of the atmosphere.Mon.Wea.Rev.,93,727-768.
    Tuleya,R.E.and Y.Kurihara,1978:A numerical simulation of the landfall of tropical cyclones.J.Atmos.Sci.34,242-257.
    Wang,Y.,J.D.Kepert,and G.J.Holland,2001:The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity.Mon.Wea.Rev.129,2481-2500.
    Wurman,J.and J.Winslow,1998:Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran.Science,280,555-557.
    Williams,G.J.Jr.,R.K.Taft,B.D.McNoldy,and W.H.Schubert,2013:Shock-like structures in the tropical cyclone boundary layer.J.Adv.Model.Earth.Syst.,5,338-353.
    Williams,G.J.Jr.,2015:The effects of vortex structure and vortex translation on the tropical cyclone boundary layer wind field.J.Adv.Model.Earth.Syst.,7,188-214.
    Williams,G.J.Jr.,2016:The inner core thermodynamics of the tropical cyclone boundary layer.Meteor.Atmos.Phys.128,545.https://doi.org/10.1007/s00703-016-0441-5
    Willoughby,H.E.,R.W.R.Darling,and M.E.Rahn,2006:Parametric presentation of the primary hurricane vortex.Part II:Anew family of sectionally continuous profiles.Mon.Wea.Rev.,134,1102-1120.
    Wu,C.-C.,H.-J.Cheng,Y.Wang,and K.-H.Chou,2009:A numerical investigation of the eyewall evolution in a landfalling typhoon.Mon.Wea.Rev.,137,21-40.
    Xie,L.,H.Liu,B.Liu,and S.Bao,2011:A numerical study of the effect of hurricane wind asymmetry on storm surge and inundation.Ocean Modeling,36,71-79.
    Yang,M.-J.,D.-L.Zhang,X.-D.Tang,and Y.Zhang,2011:Amodeling study of Typhoon Nari(2001)at landfall:2.Structural changes and terrain-induced asymmetries.J.Geophys.Research.116,D9.
    Zhang,J.A.,P.G.Black,J.R.French,and W.M.Drennan,2008:First direct measurements of enthalpy flux in the hurricane boundary layer:The CBLAST results.Geophys.Research Let.,35,L14813,doi:10.1029/2008GL034374.
    Zhang,J.A.and M.T.Montgomery,2012:Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes.J.Atmos.Sci.,69,1306-1316.
    Zhang,J.A.and W.M.Drennan,2012:An observational study of vertical eddy diffusivity in the hurricane boundary layer.J.Atmos.Sci.69,3223-3236.
    Zhu,P.,2008:Impact of land-surface roughness on surface winds during hurricane landfall.Q.J.R.Meteor.Soc.,134,1051-1057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700