用户名: 密码: 验证码:
砷污染湿地生境下土壤微生物多样性及群落结构特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Soil Microbial Diversity and Community Structure in Arsenic-Polluted Wetland Habitats
  • 作者:赵立君 ; 任伟 ; 郑毅 ; 赵蓉 ; 王妍 ; 李佳璇 ; 齐丹卉
  • 英文作者:ZHAO Lijun;REN Wei;ZHENG Yi;ZHAO Rong;WANG Yan;LI Jiaxuan;QI Danhui;Wetland College,Southwest Forestry University;College of Ecology and Soil and Water Conservation,Southwest Forestry University;Research Institute of Desertification,Southwest Forestry University;
  • 关键词: ; 湿地 ; 微生物多样性 ; 微生物群落结构 ; 高通量测序
  • 英文关键词:arsenic;;wetland;;microbial diversity;;microbial community structure;;high throughput sequencing
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:西南林业大学湿地学院;西南林业大学生态与水土保持学院;西南林业大学石漠化研究院;
  • 出版日期:2019-01-15
  • 出版单位:环境科学研究
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(No.31560147,21767027);; 云南省高校土壤侵蚀与控制重点实验室资助项目~~
  • 语种:中文;
  • 页:156-164
  • 页数:9
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X53;X172
摘要
为研究As (砷)污染对微生物多样性的影响,找寻有利于As污染修复的抗As菌种,利用高通量测序技术分析As胁迫[w(As)分别为0、80、100、150、200和400 mg/kg,依次记为AT0组、AT80组、AT100组、AT150组、AT200组和AT400组]对湿地生境中土壤微生物多样性及群落结构特征的影响.结果表明:As污染会引起微生物多样性和群落结构的变化,但并不是简单的负相关.在各处理组中,AT80组的土壤中微生物多样性最高,OTU (operational taxonomic units)数高达1 849,较未经As处理的AT0组增加了58. 9%,说明低As胁迫在一定程度上会刺激As敏感微生物的生长繁殖,如Desulfovibrio (脱硫弧菌属)和Allobaculum等菌属,使群落结构更加复杂多样.高w(As)(400 mg/kg)对微生物有明显的抑制作用,导致某些物种消亡和多样性下降. As胁迫会诱导抗As微生物[如Pseuomonas (假单胞菌属)]成为优势类群,群落结构趋于稳定、单一.微生物群落结构对不同w(As)胁迫有明显的响应特征,可作为As污染湿地土壤质量评价的灵敏指标.在AT400组中存在大量的Pseudomonas veronii,可为As污染湿地微生物修复提供借鉴.研究显示,微生物对As污染具有较为敏感的响应,其中,Proteobacteria (变形菌门)和Firmicutes(厚壁菌门)为As污染生境中微生物优势门类并且与非专性吸附态As和谷胱甘肽含量呈正相关.
        In order to study the effects of arsenic pollution on microbial diversity and to find the arsenic-resistant bacteria which were beneficial to the remediation of arsenic pollution,high throughput sequencing method was used to analyze the effects of arsenic stress on soil microbial diversity and community structure in wetland habitats( the concentrations of As were set at 0,80,100,150,200 and 800mg/kg,respectively,and were marked as AT80,AT100,AT100,AT150,AT200 and AT400 correspondingly). The results showed that arsenic stress could cause changes in both microbial diversity and community structure,however,it was not a simple negative correlation.The highest number of OTU( operational taxonomic units) showed in the AT80 group and the value was 1849 which was 58. 9% higher than that of AT0 group without arsenic treatment. This indicated that low arsenic stress might stimulate the growth and reproduction of arsenic-sensitive microorganisms,such as Desulfovibrio and Allobaculum,which made the community structure more complex and diverse.High concentration of arsenic(400 mg/kg) significantly inhibited microbes,resulting in the extinction of some species and the decrease of diversity. Arsenic pollution could induce arsenic-resistant microorganisms such as Pseudomonas to become dominant groups,and the community structure tended to be stable and single. The microbial community structure had obvious response characteristics to different arsenic pollution stresses and could be used as a sensitive index for soil quality evaluation of arsenic contaminated wetlands. There were alarge number of Pseudomonas veronii in the AT400 group,which could be used as a reference for microbial remediation of arsenic contaminated wetland. The results showed that microbes were sensitive to arsenic pollution,and Proteobacteria and Firmicutes were the dominant species of microorganisms in arsenic-polluted habitat and were positively correlated with non-specific adsorbed arsenic and glutathione.
引文
[1]吴佳,谢明吉,杨倩,等.砷污染微生物修复的进展研究[J].环境科学,2011,32(3):817-824.WU Jia,XIE Mingji,YANG Qian,et al. Current researches in microbial remediation of arsenic pollution[J]. Environmental Science,2011,32(3):817-824.
    [2] SMITH E,NAIDU R,Al LTSON A M. Arsenic in the soil environment:a review[J].Advances in Agronomy,1998,64:149-195.
    [3]赵其国.发展与创新现代土壤科学[J].土壤学报,2003,40(3):321-327.ZHAO Qiguo. Development and innovation of modern soil science[J].Acta Pedologica Sinica,2003,40(3):321-327.
    [4] BRAMMER H,RAVENSCROFT P.Arsenic in groundwater:a threat to sustainable agriculture in South and South-East Asia[J].Environment International,2009,35(3):647-654.
    [5] US Environmental Protection Agency. Recent developments for in situ treatment of metal contaminated soils[M].Washington DC:US Environmental Protection Agency,1997:1-12.
    [6] FITZ W J,WENZEL W W. Arsenic transformations in the soilrhizosphere-plant system:fundamentals and potential application to phytoremediation[J]. Journal of Biotechnology,2002,99(3):259-278.
    [7] LI G,SUN G X,WILLIAMS P N,et al.Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International,2011,37(7):1219-1225.
    [8]周启星.土壤环境污染化学与化学修复研究最新进展[J].环境化学,2006,25(3):257-265.ZHOU Qixing.New researching progresses in pollution chemistry of soil environment and chemical remediation[J]. Environmental Chemistry,2006,25(3):257-265.
    [9]周启星,王美娥.土壤生态毒理学研究进展与展望[J].生态毒理学报,2006,1(1):1-11.ZHOU Qixing,WANG Meie.Researching advancement and prospect of soil ecotoxicology[J]. Asian Journal of Ecotoxicology,2006,1(1):1-11.
    [10]张涪平,曹凑贵,李苹,等.藏中矿区重金属污染土壤的微生物活性变化[J].生态学报,2010,30(16):4452-4459.ZHANG Fuping,CAO Caogui,LI Ping,et al.Effects of heavy metal pollution on microbial activities of mining soils in central Tibet[J].Acta Ecologica Sinica,2010,30(16):4452-4459.
    [11] GILLER K E,WITTER E,MCGRATH S P.Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review[J]. Soil Biology&Biochemistry,1998,30(10/11):1389-1414.
    [12] BRITO E M,DE LA C B M,CARETTA C A,et al. Impact of hydrocarbons,PCBs and heavy metals on bacterial communities in Lerma River,Salamanca,Mexico:investigation of hydrocarbon degradation potential[J]. Science of the Total Environment,2015,521/522:1-10.
    [13] HALLER L,TONOLLA M,ZOPFI J,et al.Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels(Lake Geneva,Switzerland)[J]. Water Research,2011,45(3):1213-1228.
    [14]江玉梅,张晨,黄小兰,等.重金属污染对鄱阳湖底泥微生物群落结构的影响[J].中国环境科学,2016,36(11):3475-3486.JIANG Yumei,ZHANG Chen,HUANG Xiaolan,et al. Effect of heavy metals in the sediment of Poyang Lake estuary on microbial communities structure base on Mi-seq sequencing[J]. China Environmental Science,2016,36(11):3475-3486.
    [15]王丹,魏威,梁东丽,等.土壤铜、铬(Ⅵ)复合污染重金属形态转化及其对生物有效性的影响[J].环境科学,2011,32(10):3113-3120.WANG Dan,WEI Wei,LIANG Dongli,et al. Transformation of copper and chromium in co-contaminated soil and its influence on bioavailability for pakchoi(Brassica chinensis)[J]. Environmental Science,2011,32(10):3113-3120.
    [16]林蕾,陈世宝.土壤中锌的形态转化、影响因素及有效性研究进展[J].农业环境科学学报,2012,31(2):221-229.LIN Lei,CHEN Shibao. Transformation and influence factors of speciation of zinc in soils and its effect on zinc bioavailability:a review[J]. Journal of Agro-Environment Science,2012,31(2):221-229.
    [17]汪峰,类成霞,蒋瑀霁,等.长江中下游两种典型水稻土微生物对砷污染的响应[J].中国环境科学,2014,34(11):2931-2941.WANG Feng,LEI Chengxia,JIANG Yuji,et al. Response of microbial community to arsenic contamination in two major type of paddy soils in the middle and lower reaches of the Yangtse River[J].China Environmental Science,2014,34(11):2931-2941.
    [18]孙玉青,张莘,吴照祥,等.雄黄矿区不同砷污染土壤中微生物群落结构及碳源利用特征[J].环境科学学报,2015,35(11):3669-3678.SUN Yuqing,ZHANG Xin,WU Zhaoxiang,et al. Soil microbial community structure and carbon source metabolic diversity in the Realgar mining area[J]. Acta Scientiae Circumstantiae,2015,35(11):3669-3678.
    [19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社,2000:12-19.
    [20] WENZEL W W,KIRCHBAUMER N,PROHASKA T,et al.Arsenic fractionation in soils using an improved sequential extraction procedure[J].Analytica Chimica Acta,2001,436(2):309-323.
    [21] WARD D M,BATESON M M,WELLER R,et al.Ribosomal RNA analysis of microorganisms as they occur in nature[J].Advances in Microbial Ecology,1992,12(6):219-286.
    [22] CAPORASO JG,KUCZYNSKI J,STOMBAUGH J,et al. QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335-336.
    [23]沈菊培,贺纪正.微生物介导的碳氮循环过程对全球气候变化的响应[J].生态学报,2011,31(11):2957-2967.SHEN Jupei,HE Jizheng. Responses of microbes-mediated carbon and nitrogen cycles to global climate change[J]. Acta Ecologica Sinica,2011,31(11):2957-2967.
    [24] GILLER K E,WITTER E,MCGRATH S P.Heavy metals and soil microbes[J]. Soil Biology&Biochemistry,2009,41(10):2031-2037.
    [25]邢奕,司艳晓,洪晨,等.铁矿区重金属污染对土壤微生物群落变化的影响[J].环境科学研究,2013,26(11):1201-1211.XING Yi,SI Yanxiao,HONG Chen,et al.Impact of long-term heavy metal pollution on microbial community in iron mine soil[J].Research of Environmental Sciences,2013,26(11):1201-1211.
    [26]郑涵,田昕竹,王学东,等.锌胁迫对土壤中微生物群落变化的影响[J].中国环境科学,2017,37(4):1458-1465.ZHENG Han,TIAN Xinzhu,WANG Xuedong,et al. Effects of Zn pollution on soil microbial community in field soils and its main influence factors[J]. China Environmental Science,2017,37(4):1458-1465.
    [27]韩永和,贾梦茹,傅景威,等.不同浓度砷酸盐胁迫对蜈蚣草根际微生物群落功能多样性特征的影响[J].南京大学学报(自然科学),2017,53(2):275-285.HAN Yonghe,JIA Mengru,FU Jingwei,et al. Impacts of arsenate concentrations on functional diversities of rhizosphere microbial communities of Pteris vittata[J]. Journal of Nanjing University(Natural Science),2017,53(2):275-285.
    [28] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.
    [29] WANG Qiong,GARRITY G M,TIEDJE J M,et al.Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied&Environmental Microbiology,2007,73(16):5261-5267.
    [30] COSTA P S,SCHOLTE L L,REIS M P,et al.Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining[J].PLOS ONE,2014,9(4):e95655.
    [31]邢奕,张莹莹,司艳晓,等.铁矿区重金属污染对土壤微生物代谢活性的影响[J].环境科学研究,2015,28(12):1879-1886.XING Yi,ZHANG Yingying,SI Yanxiao,et al.Impacts of long-term heavy metal pollution on microbial metabolic activity in iron mine soil[J].Research of Environmental Sciences,2015,28(12):1879-1886.
    [32]张阳阳,胡学玉,余忠,等.Cd胁迫下城郊农业土壤微生物活性对生物炭输入的响应[J].环境科学研究,2015,28(6):936-942.ZHANG Yangyang,HU Xueyu,YU Zhong,et al. Response of agricultural soil microbial activity to biochar under cadmium stress[J].Research of Environmental Sciences,2015,28(6):936-942.
    [33] GILLAN D C,DANIS B,PERNET P,et al.Structure of sedimentassociated microbial communities along a heavy-metal contamination gradient in the marine environment[J]. Applied&Environmental Microbiology,2005,71(2):679-690.
    [34] YUAN Guoli,LIU Chen,CHEN Long,et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles:Poyang Lake in China[J]. Journal of Hazardous Materials,2011,185(1):336-345.
    [35]段学军,闵航.镉对稻田土壤典型微生物种的胁迫生理毒性[J].生态环境学报,2005,14(6):865-869.DUAN Xuejun,MIN Hang. Physiological toxicity of Cd2+to representative microbial species in submerged paddy soil[J].Ecology and Environmental Sciences,2005,14(6):865-869.
    [36] TURPEINEN R,KAIRESALO T,HGGBLOM M M. Microbial community structure and activity in arsenic-,chromium-and copper-contaminated soils[J].Fems Microbiology Ecology,2004,47(1):39-50.
    [37] ANDERSON C R,OOK G M. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand[J].Current Microbiology,2004,48(5):341-347.
    [38] VALENZUELA C,CAMPOS V L,YANEZ J,et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River,northern Chile[J]. Bulletin of Environmental Contamination&Toxicology,2009,82(5):593-596.
    [39] MERTENS J,BROOS K,WAKELIN S A,et al. Bacteria,not archaea,restore nitrification in a zinc-contaminated soil[J]. The Isme Journal,2009,3(8):916-923.
    [40] MERTENS J,SPRINGAEL D,DE T I,et al.Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil[J]. Environmental Microbiology,2006,8(12):2170-2178.
    [41]赵凤.砷-谷胱甘肽复合物的降解及含砷化合物对谷胱甘肽清除自由基的影响[D].天津:天津大学,2012:45-47.
    [42]孙鲜策,蔡竹,刘爽,等. GSH对砷氧化损伤保护作用的研究[J].大连医科大学学报,2008,30(6):500-502.SUN Xiance,CAI Zhu,LIU Shuang,et al. Protective effect of GSH on oxidative damage induced by arsenic[J]. Journal of Dalian Medical University,2008,30(6):500-502.
    [43] FIERER N,JACKSON R B.The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Science USA,2006,103(3):626-631.
    [44] LI R Y,STROUD J L,MA J F,et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science&Technology,2009,43(10):3778-3783.
    [45] STROUD J L,KHAN M A,NORTON G J,et al.Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions[J]. Environmental Science&Technology,2011,45(10):4262-4269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700