用户名: 密码: 验证码:
Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China
  • 作者:XIONG ; Xin ; LI ; Jiankang ; WANG ; Denghong ; LI ; Shanping ; LIN ; Hao
  • 英文作者:XIONG Xin;LI Jiankang;WANG Denghong;LI Shanping;LIN Hao;MNR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources, Chinese Academy of Geological Sciences;Qinghai Province Key Laboratory of Geological Process and Mineral Resources of Northern Qinghai-Tibetan Plateau,Qinghai Institute of Geological Survey;Qinghai University;
  • 英文关键词:granitic pegmatite;;fluid inclusions;;rare metals;;lithium deposit;;Zhawulong
  • 中文刊名:Acta Geologica Sinica(English Edition)
  • 英文刊名:地质学报(英文版)
  • 机构:MNR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources, Chinese Academy of Geological Sciences;Qinghai Province Key Laboratory of Geological Process and Mineral Resources of Northern Qinghai-Tibetan Plateau,Qinghai Institute of Geological Survey;Qinghai University;
  • 出版日期:2019-08-15
  • 出版单位:Acta Geologica Sinica(English Edition)
  • 年:2019
  • 期:04
  • 基金:funded by the National Natural Science Foundation of China (No.41703048, 41872096);; the Chinese National Nonprofit Institute Research Grant of CAGS, CGS (YYWF201520, JYYWF201814);; the China Geological Survey (DD20160055, DD20190173)
  • 语种:英文;
  • 页:159-170
  • 页数:12
  • CN:11-2001/P
  • ISSN:1000-9515
  • 分类号:P618.71
摘要
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt. Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite. There are three distinguishable types of fluid inclusions: crystal-rich, CO2–NaCl–H2 O, and NaCl–H2 O. At more than 500°C and 350~480 MPa, crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage, characterized by a dense hydrous alkali borosilicate fluid with a carbonate component. Between 412°C and 278°C, CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I) and quartz(II) with a low salinity(3.3–11.9 wt%NaCl equivalent) and a high volatile content, which represent the boundary between the transition stage and the hydrothermal stage. The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C, have a low salinity(1.1–13.9 wt%NaCl equivalent). The various types of fluid inclusions reveal the P–T conditions of pegmatite formation, which marks the transition process from magmatic to hydrothermal. The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals, such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals. Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.
        The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt. Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite. There are three distinguishable types of fluid inclusions: crystal-rich, CO2–NaCl–H2 O, and NaCl–H2 O. At more than 500°C and 350~480 MPa, crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage, characterized by a dense hydrous alkali borosilicate fluid with a carbonate component. Between 412°C and 278°C, CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I) and quartz(II) with a low salinity(3.3–11.9 wt%NaCl equivalent) and a high volatile content, which represent the boundary between the transition stage and the hydrothermal stage. The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C, have a low salinity(1.1–13.9 wt%NaCl equivalent). The various types of fluid inclusions reveal the P–T conditions of pegmatite formation, which marks the transition process from magmatic to hydrothermal. The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals, such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals. Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.
引文
Anderson,A.J.,Clark,A.H.,and Gray,S.,2001.The occurrence and origin of zabuyelite(Li2CO3)in spodumene-hosted fluid inclusions:implications for the internal evolution of rareelement granitic.Canadian Mineralogist,39(3):1513-1527.
    Audétat,A.,and Keppler,H.,2004.Viscosity of fluids in subduction zones.Science,303:513-516.
    Bodnar,R.J.,1983.A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-Xproperties of inclusion fluids.Economic Geology,78(3):535-542.
    Brown,P.E.,and Lamb,W.M.,1989.P-V-T properties of fluids in the system H2O±CO2±NaCl:New graphical presentations and implications for fluid inclusion studies.Geochimica Et Cosmochimica Acta,53(6):1209-1221.
    ?erny,P.,1991.Rare-element granitic pegmatites.Part I:Anatomy and internal evolution pegmatite deposits.Geosciences Canada,18:49-67.
    Chen,Y.C.,Pei,R.F.,and Zhang,H.L.,1990.The geology of nonferrous and rare metal deposits related to Mesozoic granitoids in the Nanling region,China.Bulletin of the Chinese Academy of Geological sciences,20:79-85(in Chinese with English abstract).
    Collins,P.L.,1979.Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity.Economic Geology,74(6):1435-1444.
    Eroedder,A.,and Bodnar,R.J.,1980.Geologic pressure determinations from fluid inclusion studies.Annual Review of Earth and Planetary Sciences,8(1):263-301.
    Fuertes-Fuente,M.,and Martin-Izard,A.,1998.The Forcarei Sur rareelement granitic pegmatite field and associated mineralization,Galicia,Spain.American Mineralogist,36:303-325.
    Fuertes-Fuente,M.,Martin-Izard,A.,Boiron,M.C.,and Mangas,J.,2000.Fluid evolution of rare-element and muscovite granitic pegmatites from central Galicia,NW Spain.Mineralium Deposita.,35:332-345.
    Foord,E.E.,?erny,P.,Jackson,L.L.,Sherman,D.M.,and Eby,R.K.,1995.Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith,Colorado.Mineralogy and Petrology,55:1-26.
    Fu,X.F.,Yuan,L.P.,Wang,D.H.,Hou,L.W.,Pan,M.,Hao,X.F.,Liang,B.,and Tang,Y.,2015.Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield,Sichuan.Mineral Deposits,34(6):1172-1186(in Chinese with English abstract).
    Jahns,R.H.,and Burnham,C.W.,1969.Experimental studies of pegmatite genesis:I.A model for the derivation and crystallization of granitic pegmatites.EcononmyGeology,64:843-864.
    Keppler,H.,1993.Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks.Contributions to Mineralogy and Petrology,114(4):479-488.
    Hao,X.F.,Fu,X.F.,Liang,B.,Yuan,L.P.,Pan,M.,and Tang,Y.,2015.Formation ages of granite and X03 pegmatite vein in Jiajika,western Sichuan,and their geological significance.Mineral Deposits,34(6):1199-1208(in Chinese with English abstract).
    Hu,S.H.,Hu,Z,C.,Liu,Y.S.,Luo,Y.,Lin,S.L.,and Gao,S.,2011.New techniques of major and minor elemental analysis in individual fluid inclusion--laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS).Earth Frontier,8(4):434-440(in Chinese with English abstract).
    Ju,T.Y.,and Zhao,X.B.,2016.Ore genesis of the Jiajika raremetal granitic pegmatite deposit in West Sichuan.Acta Geologica Sichuan,36(1):42-46(in Chinese with English abstract).
    Jackson,K.J.,and Helgeson,H.C.,1985.Chemical and thermodynamic constraints on the hydrothermal transport and deposition of Sn I.Calculation of the solubility of cassiterite at high pressure and temperature.Geochimica Et Cosmochimica Acta,49:1-22.
    Li,F.,Chun,Z.,Jin,C.,and Jin,Z.D.,2000.Genetic interpretation of Li-F-rich rare metal-bearing granites in South China.Mineral deposits,19(4):376-395(in Chinese with English abstract).
    Li,J.K.,Zhang,D.H.,Wang,D.H.,and Zhang,W.H.,2008.Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny.Geological Review,54(2):33-41(in Chinese with English abstract).
    Li,J.K.,Wang,D.H.,and Chen,Y.C.,2013.The ore-forming mechanism of the Jiajika pegmatite‐type rare metal deposit in western Sichuan Province:Evidence from isotope dating.Acta Geologica Sinica(English Edition),87(1):91-101.
    Li,J.K.,Zhou,T.R.,and Liu,X.F.,2014.The metallogenetic regularity of lithium deposit in China.Acta Geologica Sinica,88(12):2269-2283(in Chinese with English abstract).
    Li,J.K.,and Chou,I.M.,2016.An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit,China.Journal of Geochemical Exploration,171:29-36.
    Li,J.K.,and Chou,I.M.,2017.Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika Lithium deposit,China,under elevated external pressures in a hydrothermal diamond-anvil cell.Geofluids,11(3-4):1-12.
    Li,X.J.,Li,J.K.,Liu,Y.C.,and Xiong,C.L.,2018.Geochemical features of muscovite granite in the Zhawulonggranitic pegmatite type rare metal deposit,Western Sichuan.Geological Review,64(4):1005-1016(in Chinese with English abstract).
    Liu,L.J.,Wang,D.H.,Yang,Y.Q.,Fu,X.F.,Hao,X.F.,Pan,M.,Tang,Y.,and Chen,Z.Y.,2016.Metallogenic characteristics of X03 rare metal vein in Jiajika of Sichuan.Journal of Guilin University of Technology,36(1):50-59(in Chinese with English abstract).
    London,D.,1984.Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O:a petrogenetic grid for lithium-rich pegmatites.American Mineralogist,69(11-12):995-1004.
    London,D.,1986.The magmatic-hydrothermal transition in the Tanco rare-element pegmatite:evidence from fluid inclusions and phase equilibrium experiments.American Mineralogist,71:376-395.
    London,D.,1996.Granitic pegmatites.Trans.R.Soc.Edinburgh,87:305-319.
    London,D.,2018.Ore-forming processes within granitic pegmatites.Ore Geology Reviews,S0169136818300283.
    Lu,H.Z.,Wang,Z.G.,and Li,Y.S.,1996.Magma/fluid transition and genesis of pegmatite dike No.3 at Altay,Xinjiang.Acta Mineralogica Sinica,16:1-7(in Chinese with English abstract).
    Rickers,K.,Thomas,R.,and Heinrich,W.,2006.The behavior of trace elements during the chemical evolution of the H2O-,B-,and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf,Germany:a SXRF study of melt and fluid inclusions.Mineralium Deposita,41(3):229-245.
    Simmons,W.B.S.,and Webber,K.L.,2008.Pegmatite genesis:State of the art.European Journal of Mineralogy,20(4):421-438.
    Sirbescu,M.L.C.,and Nabelek,P.I.,2003.Crystallization conditions and evolution of magmatic fluids in the Harney peak granite and associated pegmatites,Black Hills,South Dakota-Evidence from fluid inclusions.Geochimica Et Cosmochimica Acta,67(13):2443-465.
    Stefanova,E.,Driesner,T.,Zajacz,Z.,Heinrich,C.A.,Petrov,P.,and Vasilev,Z.,2014.Melt and fluid inclusions in hydrothermal veins:The magmatic to hydrothermal evolution of the Elatsiteporphyry Cu-Au deposit,Bulgaria.Economic Geology,109(5):1359-1381.
    Tayler,B.E.,Foord,E.E.,and Friedrichsen,H.,1979.Stable isotope and fluid inclusion studies of gem-bearing granite pegmatite-aplite dikes,San Diego Co.California.Contributions to Mineralogy and Petrology,68(2):185-205.
    Tang,G.F.,and Wu,S.X.,1984.Geological research report on Jiajika granitic pegmatite lithium deposit in Kangding,Sichuan.Beijing,Geological Publishing House(in Chinese with English abstract).
    Thomas,R.,Webster,J.D.,and Heinrich,W.,2000.Melt inclusions in pegmatite quartz:complete miscibility between silicate melts and hydrous fluids at low pressure.Contributions to Mineralogy and Petrology,139(4):394-401.
    Thomas,R.,F?rster,H.J.,Rickers,K.,and Webster,J.D.,2005.Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas:a melt/fluid-inclusion study.Contributions to Mineralogy and Petrology,148(5):582-601.
    Thomas,R.,Webster,J.D.,Rhede,D.,Seifert,W.,Rickers,K.,F?rster,H.J.,Heinrich,W.,and Davidson,P.,2006.The transition from peraluminous to peralkaline granite melts:Evidence from melt inclusions and accessory minerals.Lithos,91:137-149.
    Thomas,R.,and Davidson,P.,2016,Revisiting complete miscibility between silicate melts and hydrous fluids,and the extreme enrichment of some elements in the supercritical state-Consequences for the formation of pegmatites and ore deposits.Ore Geology Reviews,72:1088-1101.
    Wang,D.H.,and Fu,X.F.,2013.Breakthrough of lithium prospecting on the periphery of Jiajika,Sichuan.Geology in China,32(6):987-987(in Chinese with English abstract).
    Wang,D.H.,Wang,R.J.,Fu,X.F.,2016.A discussion on the major problems related to geological investigation and assessment for energy metal resources base:a case study of the Jiajika large lithium mineral resource base.Acta Geoscientia Sinica,(4):471-480(in Chinese with English abstract).
    Wu,B.D.,and Zhang,Y.,2016.Present situation and exploitation of lithium resources in Sichuan province.The Prospect of Mining Technology,16(4):16-19(in Chinese with English abstract).
    Wu,C.N.,Zhu,J.C.,Liu,C.S.,Sun,Y.W.,Cheng,H.,Hao,X.F.,Liu,L.J.,Pan,M.,and Hou,J.L.,1995.A study on the inclusions in beryls from Kuwei and Koktokay pegmatites,Altai,Xinjiang.Journal of Nanjing University(Natural Sciences Edition),(2):350-356(in Chinese with English abstract).
    Xiong,X.L.,Zhao,Z.H.,Zhu,J.C.,Rao,B.,and Lai,M.Y.,1998.Experiment on the fluid/melt partition of fluorine in the system albite granite-H2O-HF.Geochimica,(1):66-73(in Chinese with English abstract).
    Yang,Z.M.,Xie,Y.L.,Li,G.M.,and Xu,J.H.,2006.SEM/EDSconstraints on nature of ore-forming fluids in Gangdese porphyry copper belt:Case studies of Qulong and Tinggong deposits.Mineral deposits,25(2):147-154(in Chinese with English abstract).
    Yuan,Z.X.,Bai,G.,and Yang,Y.Q.,1987.A discussion on petrogenesis of rare metal granites.Mineral deposits.6(1):88-94(in Chinese with English abstract).
    Zhang,D.H.,2005.Some problems on the geochemistry of oreforming processes.Geological Bulletin of China,24(10):885-891(in Chinese with English abstract).
    Zhao,Y.X.,Zhao,G.M.,and Zeng,Y.F.,2015.Geological features and genetic model for the granitic pegmatite type(Jiajika type)Li deposits in West Sichuan--By the example of the Jiajika Li deposit.Actageologica Sichuan,35(3):391-395(in Chinese with English abstract).
    Zhu,J.C.,Wu,C.N.,Liu,C.S.,Li,F.C.,Huang,X.L.,and Zhou,D.S.,2000.Magmatic-hydrothermal evolution and genesis of Koktokay No.3 rare metal pegmatite dyke,Altai,China.Geological Journal of China Universities,6(1):40-52(in Chinese with English abstract).
    Zhu,J.C.,Rao,B.,Xiong,X.L.,Li,F.C.,and Zhang,P.H.,2002.Comparison and genetic interpretation of Li-F rich,raremetal bearing granitic rocks.Geochimica,31(2):141-152(in Chinese with English abstract).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700