用户名: 密码: 验证码:
PKM2和Notch1在结直肠癌中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of PKM2 and Notch1 in Colorectal Cancer
  • 作者:王佳 ; 杜文龙 ; 郭渊先 ; 尹兰宁
  • 英文作者:WANG Jia;DU Wen-long;GUO Yuan-xian;YIN Lan-ning;The Sixth Department of General Surgery of Second Affiliated Hospital of Lanzhou University;
  • 关键词:结直肠癌 ; M2型丙酮酸激酶(PKM2) ; Notch1 ; Wnt/β-连环蛋白
  • 英文关键词:colorectal cancer;;pyruvate kinase M2(PKM2);;Notch1;;Wnt/β-catenin
  • 中文刊名:生命科学研究
  • 英文刊名:Life Science Research
  • 机构:兰州大学第二医院普外六科;
  • 出版日期:2019-08-31
  • 出版单位:生命科学研究
  • 年:2019
  • 期:04
  • 基金:甘肃省自然科学基金资助项目(1606RJZA198);; 博士科研基金资助项目(ynbskyjj2015-2-20)
  • 语种:中文;
  • 页:83-90
  • 页数:8
  • CN:43-1266/Q
  • ISSN:1007-7847
  • 分类号:R735.34
摘要
研究表明, M2型丙酮酸激酶(pyruvate kinase M2, PKM2)和Notch1在结直肠癌组织中高表达,且与结直肠癌的发生、发展有一定的关系;其表达水平亦与肿瘤的化、放疗效果有关,严重影响患者预后,是目前结直肠癌治疗和研究的关键靶点。PKM2主要通过调节癌细胞代谢及基因转录,促进癌细胞外泌体分泌,并在某些lncRNAs的调节下发挥促癌作用,可作为结直肠癌的辅助诊断指标。Notch1可在mi RNAs以及自噬的调节下发挥促癌作用,且可通过促进上皮间质转化(epithelial-mesenchymal transition, EMT)促进结直肠癌转移。此外,PKM2和Notch1在结直肠癌中的作用与Wnt/β-连环蛋白(β-catenin)信号通路有联系,但两者之间是否有相关性,目前尚不明确。本文主要就PKM2和Notch1在结直肠癌中的研究进展进行探讨,以期为结直肠癌的靶向治疗研究提供新思路。
        Studies have shown that pyruvate kinase M2(PKM2) and Notch1 are highly expressed in colorectal cancer tissues and have a certain relationship with the occurrence and development of colorectal cancer.The expression levels of PKM2 and Notch1 are also related to the effect of chemotherapy and radiotherapy,which seriously affect the prognosis of patients with colorectal cancer, and both are the key targets of colorectal cancer treatment and research. PKM2 mainly regulates the metabolism and gene transcription of can-cer cells, and promotes the development of tumor under the regulation of some lncRNAs. It can also be used as an auxiliary diagnostic index of colorectal cancer. The Notch1 can play the similar role as PKM2 under the regulation of miRNAs and autophagy, and cause the metastasis of colorectal cancer by promoting ep-ithelial-mesenchymal transition(EMT). In addition, PKM2 and Notch1 are associated with the Wnt/β-catenin signaling pathway in colorectal cancer, but it is not clear whether there is a correlation between them. Here the research progress of PKM2 and Notch1 in colorectal cancer were discussed, which would provide a new idea for the targeted treatment of colorectal cancer.
引文
[1] DESANTIS C E, LIN C C, MARIOTTO A B, et al. Cancer treatment and survivorship statistics, 2014[J]. CA:A Cancer Journal for Clinicians, 2014, 64(4):252-271.
    [2] BASU A, SETH S, ARORA K, et al. Evaluating estradiol levels in male patients with colorectal carcinoma[J]. Journal of Clinical and Diagnostic Research, 2015, 9(1):BC08-BC10.
    [3] CENTER M M, JEMAL A, SMITH R A, et al. Worldwide variations in colorectal cancer[J]. CA:A Cancer Journal for Clinicians, 2009, 59(6):366-378.
    [4] CENTER M M, JEMAL A, WARD E. International trends in colorectal cancer incidence rates[J]. Cancer Epidemiology, Biomarkers&Prevention, 2009, 18(6):1688-1694.
    [5] VAN CUTSEM E, NORDLINGER B, ADAM R, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases[J]. European Journal of Cancer, 2006,42(14):2212-2221.
    [6] SHIROKI T, YOKOYAMA M, TANUMA N, et al. Enhanced expression of the M2 isoform of pyruvate kinase is involved in gastric cancer development by regulating cancer-specific metabolism[J]. Cancer Science, 2017, 108(5):931-940.
    [7] BABAEI-JADIDI R, LI N, SAADEDDIN A, et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation[J]. The Journal of Experimental Medicine, 2011, 208(2):295-312.
    [8] GUILMEAU S, FLANDEZ M, MARIADASON J M, et al. Heterogeneity of Jagged1 expression in human and mouse intestinal tumors:implications for targeting Notch signaling[J]. Oncogene, 2010, 29(7):992-1002.
    [9] NOAH T K, SHROYER N F. Notch in the intestine:regulation of homeostasis and pathogenesis[J]. Annual Review of Physiology, 2013, 75:263-288.
    [10] HACKER H J, STEINBERG P, BANNASCH P. Pyruvate kinase isoenzyme shift from L-type to M2-type is a late event in hepatocarcinogenesis induced in rats by a choline-deficient/DL-ethionine-supplemented diet[J]. Carcinogenesis, 1998, 19(1):99-107.
    [11] YANG Y C, CHIEN M H, LIU H Y, et al. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress[J]. Cancer Letters, 2018,421:28-40.
    [12] MAZUREK S, ZWERSCHKE W, JANSEN-D譈RR P, et al. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis:role of pyruvate kinase type M2and the glycolytic-enzyme complex[J]. The Biochemical Journal, 2001, 356(1):247-256.
    [13] WARBURG O. On the origin of cancer cells[J]. Science, 1956,123(3191):309-314.
    [14] ABEYWARDANA T, OH M, JIANG L, et al. CARM1 suppresses serine synthesis by promoting PKM2 activity[J]. The Journal of Biological Chemistry, 2018, 293(39):15290-15303.
    [15] FISCHER K, HOFFMANN P, VOELKL S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood,2007, 109(9):3812-3819.
    [16] PRESEK P, GLOSSMANN H, EIGENBRODT E, et al. Similarities between a phosphoprotein(pp60src)-associated protein kinase of Rous sarcoma virus and a cyclic adenosine 3′:5′-monophosphate-independent protein kinase that phospho rylates pyruvate kinase type M2[J]. Cancer Research, 1980, 40(5):1733-1741.
    [17] FENG Y, LIU J, GUO W, et al. Atg7 inhibits Warburg effect by suppressing PKM2 phosphorylation resulting reduced epithelial-mesenchymal transition[J]. International Journal of Biological Sciences, 2018, 14(7):775-783.
    [18] LUO W, HU H, CHANG R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J].Cell, 2011, 145(5):732-744.
    [19] YANG W, XIA Y, JI H, et al. Nuclear PKM2 regulates betacatenin transactivation upon EGFR activation[J]. Nature, 2011,480(7375):118-122.
    [20] YANG W, ZHENG Y, XIA Y, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect[J]. Nature Cell Biology, 2012, 14(12):1295-1304.
    [21] KOREN E, FUCHS Y. The bad seed:cancer stem cells in tumor development and resistance[J]. Drug Resistance Updates, 2016,28:1-12.
    [22] LUO W, SEMENZA G L. Emerging roles of PKM2 in cell metabolism and cancer progression[J]. Trends in Endocrinology and Metabolism, 2012, 23(11):560-566.
    [23] MARTINS V R, DIAS M S, HAINAUT P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer[J].Current Opinion in Oncology, 2013, 25(1):66-75.
    [24] MCALLISTER S S, WEINBERG R A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis[J]. Nature Cell Biology, 2014, 16(8):717-727.
    [25] SUBRA C, GRAND D, LAULAGNIER K, et al. Exosomes account for vesicle-mediated transcellular transport of activat able phospholipases and prostaglandins[J]. Journal of Lipid Research, 2010, 51(8):2105-2120.
    [26] THERY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[M]//Current Protocols in Cell Biology. John Wiley&Sons, Inc. 2006, Chapter 3:Unit 3.22.
    [27] RECORD M. Introduction to the thematic review series on extracellular vesicles:a focus on the role of lipids[J]. Journal of Lipid Research, 2018, 59(8):1313-1315.
    [28] RECORD M, SILVENTE-POIROT S, POIROT M, et al. Extracellular vesicles:lipids as key components of their biogenesis and functions[J]. Journal of Lipid Research, 2018, 59(8):1316-1324.
    [29] SHELDON H, HEIKAMP E, TURLEY H, et al. New mechanism for Notch signaling to endothelium at a distance by delta-like4 incorporation into exosomes[J]. Blood, 2010, 116(13):2385-2394.
    [30] GROSS J C, CHAUDHARY V, BARTSCHERER K, et al. Active Wnt proteins are secreted on exosomes[J]. Nature Cell Biology,2012, 14(10):1036-1045.
    [31] YAN S, DANG G, ZHANG X, et al. Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients[J]. Oncotarget, 2017, 8(42):72220-72226.
    [32] WEI Y, WANG D, JIN F, et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23[J]. Nature Communications, 2017,8:14041.
    [33] ESTELLER M. Non-coding RNAs in human disease[J]. Nature Reviews Genetics, 2011, 12(12):861-874.
    [34] GUTSCHNER T, DIEDERICHS S. The hallmarks of cancer:a long non-coding RNA point of view[J]. RNA Biology, 2012, 9(6):703-719.
    [35] XIE X, TANG B, XIAO Y F, et al. Long non-coding RNAs in colorectal cancer[J]. Oncotarget, 2016, 7(5):5226-5239.
    [36] BHAN A, SOLEIMANI M, MANDAL S S. Long noncoding RNA and cancer:a new paradigm[J]. Cancer Research, 2017, 77(15):3965-3981.
    [37] PENG W X, KOIRALA P, MO Y Y. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41):5661-5667.
    [38] BIAN Z, JIN L, ZHANG J, et al. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p[J]. Scientific Reports, 2016,6:23892.
    [39] BIAN Z, ZHANG J, LI M, et al. Long non-coding RNA LINC-00152 promotes cell proliferation, metastasis, and confers 5-FU resistance in colorectal cancer by inhibiting miR-139-5p[J].Oncogenesis, 2017, 6(11):395.
    [40] TAKAHASHI Y, SAWADA G, KURASHIGE J, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers[J]. British Journal of Cancer, 2014,110(1):164-171.
    [41] MA Y, YANG Y, WANG F, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein2α[J]. Gut, 2016, 65(9):1494-1504.
    [42] LIU Y W, XIA R, LU K, et al. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation[J]. Molecular Cancer,2017, 16:39.
    [43] YE H, ZHOU Q, ZHENG S, et al. FEZF1-AS1/miR-107/ZNF312B axis facilitates progression and Warburg effect in pancreatic ductal adenocarcinoma[J]. Cell Death&Disease, 2018, 9(2):34.
    [44] BIAN Z, ZHANG J, LI M, et al. LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling[J]. Clinical Cancer Research, 2018, 24(19):4808-4819.
    [45]詹成,时雨,王群.丙酮酸激酶M2型应用于肿瘤诊断与治疗的研究进展[J].中华肿瘤防治杂志(ZHAN Cheng, SHI Yu,WANG Qun. Application of M2-type pyruvate kinase in cancer diagnosis and therapy[J]. Chinese Journal of Cancer Prevention and Treatment), 2013, 20(13):1043-1046.
    [46] CAVIGLIA G P, CABIANCA L, FAGOONEE S, et al. Colorectal cancer detection in an asymptomatic population:fecal immunochemical test for hemoglobin vs. fecal M2-type pyruvate kinase[J]. Biochemia Medica, 2016, 26(1):114-120.
    [47] KOGA Y, YAMAZAKI N, MATSUMURA Y. Fecal biomarker for colorectal cancer diagnosis[J]. Rinsho Byori, 2015, 63(3):361-368.
    [48]李勇,王俊江.结直肠癌患者血清、粪便中M2-PK表达的临床意义[J].南方医科大学学报(LI Yong, WANG Jun-jiang. Clinical significance of blood and fecal tumor M2-pyruvate kinase expression in patients with colorectal cancer[J]. Journal of Southern Medical University), 2011, 31(12):2087-2089.
    [49]管振祺,何凤屏,徐新,等.肿瘤型M2-PK、APC、K-ras检测在结直肠癌诊断中的意义[J].国际检验医学杂志(GUAN Zhenqi, HE Feng-ping, XU Xin, et al. Clinical significance of combined detection of fecal tumor M2-PK, APC, K-ras expression in early diagnosing colorectal cancer[J]. International Journal of Laboratory Medicine), 2017, 38(5):582-584.
    [50] MARKOWITZ S D, BERTAGNOLLI M M. Molecular origins of cancer:molecular basis of colorectal cancer[J]. The New England Journal of Medicine, 2009, 361(25):2449-2460.
    [51] DAVIES R J, MILLER R, COLEMAN N. Colorectal cancer screening:prospects for molecular stool analysis[J]. Nature Reviews Cancer, 2005, 5(3):199-209.
    [52] DUELAND S, HAGNESS M, LINE P D, et al. Is liver transplantation an option in colorectal cancer patients with nonresectable liver metastases and progression on all lines of standard chemotherapy[J]. Annals of Surgical Oncology, 2015, 22(7):2195-2200.
    [53] CAO Y, LIN Y, WANG D, et al. Enhancing 5-fluorouracil efficacy through suppression of PKM2 in colorectal cancer cells[J].Cancer Chemotherapy and Pharmacology, 2018, 82(6):1081-1086.
    [54] LI Q, ZHANG D, CHEN X, et al. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer[J]. Scientific Reports, 2015, 5:16082.
    [55] GUO W, ZHANG Y, CHEN T, et al. Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model[J]. Journal of Cancer Research and Clinical Oncology, 2011, 137(1):65-72.
    [56] SHI H S, LI D, ZHANG J, et al. Silencing of PKM2 increases the efficacy of docetaxel in human lung cancer xenografts in mice[J]. Cancer Science, 2010, 101(6):1447-1453.
    [57] SHI Y, LIU N, LAI W, et al. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells[J]. Cancer Letters, 2018, 422:81-93.
    [58] CHU D, LI Y, WANG W, et al. High level of Notch1 protein is associated with poor overall survival in colorectal cancer[J].Annals of Surgical Oncology, 2010, 17(5):1337-1342.
    [59]卢光新,宋军,徐少勇,等. Notch1在大肠癌中的表达及临床意义[J].中国医师杂志(LU Guang-xin, SONG Jun, XU Shaoyong, et al. Expression of Notch1 protein and its clinicopathological significance in colorectal carcinomas[J]. Journal of Chinese Physician), 2008, 10(4):469-471.
    [60] WANG X, HA T. Defining single molecular forces required to activate integrin and notch signaling[J]. Science, 2013, 340(6135):991-994.
    [61] ARNETT K L, HASS M, MCARTHUR D G, et al. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes[J]. Nature Structural&Molecular Biology, 2010, 17(11):1312-1317.
    [62] HASS M R, LIOW H H, CHEN X, et al. SpDamID:marking DNA bound by protein complexes identifies Notch-dimer responsive enhancers[J]. Molecular Cell, 2015, 59(4):685-697.
    [63] KATOH M, KATOH M. Integrative genomic analyses on HES/HEY family:Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5,HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer[J]. International Journal of Oncology, 2007, 31(2):461-466.
    [64] CHU D, WANG W, XIE H, et al. Notch1 expression in colorectal carcinoma determines tumor differentiation status[J]. Journal of Gastrointestinal Surgery, 2009, 13(2):253-260.
    [65] GUO J Y, WHITE E. Autophagy, metabolism, and cancer[J].Cold Spring Harbor Symposia on Quantitative Biology, 2016,81:73-78.
    [66] ZHANG T, GUO L, WANG Y, et al. Macroautophagy regulates nuclear NOTCH1 activity through multiple p62 binding sites[J].IUBMB Life, 2018, 70(10):985-994.
    [67] HUTVAGNER G, ZAMORE P D. A microRNA in a multipleturnover RNAi enzyme complex[J]. Science, 2002, 297(5589):2056-2060.
    [68] SUN Y, WANG L, GUO S C, et al. High-throughput sequencing to identify miRNA biomarkers in colorectal cancer patients[J].Oncology Letters, 2014, 8(2):711-713.
    [69] IORIO M V, CROCE C M. MicroRNAs in cancer:small molecules with a huge impact[J]. Journal of Clinical Oncology, 2009, 27(34):5848-5856.
    [70] SHEN J, LI M. MicroRNA-744 inhibits cellular proliferation and invasion of colorectal cancer by directly targeting oncogene Notch1[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2018, 26(9):1401-1409.
    [71] LIU H, YIN Y, HU Y, et al. miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH-1[J]. Pathology, Research and Practice, 2016, 212(7):643-649.
    [72] PANG R T, LEUNG C O, YE T M, et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1in cervical carcinoma and choriocarcinoma cells[J]. Carcinogenesis, 2010, 31(6):1037-1044.
    [73] CHANDIRAN K, LAWLOR R, PANNUTI A, et al. Notch1primes CD4 T cells for T helper type I differentiation through its early effects on miR-29[J]. Molecular Immunology, 2018, 99:191-198.
    [74] BANYARD J, BIELENBERG D R. The role of EMT and MET in cancer dissemination[J]. Connective tissue Research, 2015,56(5):403-413.
    [75] GRANT C M, KYPRIANOU N. Epithelial mesenchymal transition(EMT)in prostate growth and tumor progression[J]. Translational Andrology and Urology, 2013, 2(3):202-211.
    [76] PAL D, TYAGI A, CHANDRASEKARAN B, et al. Suppression of Notch1 and AKT mediated epithelial to mesenchymal transition by Verrucarin J in metastatic colon cancer[J]. Cell Death&Disease, 2018, 9(8):798.
    [77] ZHENG L, ZHANG Y, LIU Y, et al. miR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer[J]. Journal of Translational Medicine, 2015,13:252.
    [78] ARCAROLI J J, TAI W M, MCWILLIAMS R, et al. A NOTCH1gene copy number gain is a prognostic indicator of worse sur vival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer[J]. International Journal of Cancer, 2016,138(1):195-205.
    [79] FLEMMING A. Cancer stem cells:targeting the root of cancer relapse[J]. Nature Reviews Drug Discovery, 2015, 14(3):165.
    [80] VIGNARD J, MIREY G, SALLES B. Ionizing-radiation induced DNA double-strand breaks:a direct and indirect lighting up[J]. Radiotherapy and Oncology, 2013, 108(3):362-369.
    [81] ZHANG H, JIANG H, CHEN L, et al. Inhibition of Notch1/Hes1 signaling pathway improves radiosensitivity of colorectal cancer cells[J]. European Journal of Pharmacology, 2018, 818:364-370.
    [82] RYAN J L, HECKLER C E, LING M, et al. Curcumin for radiation dermatitis:a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients[J]. Radiation Research, 2013, 180(1):34-43.
    [83]杨芳,刘少琼,李春花,等.姜黄素下调结直肠癌细胞Notch1信号通路研究[J].湖南中医药大学学报(YANG Fang, LIU Shao-qiong, LI Chun-hua, et al. Study of curcumin on downregulating Notchl pathway in colorectal cancer cells[J]. Journal of Hunan University of Chinese Medicine), 2015, 35(4):10-13, 50, 73.
    [84] QI F, WEI L, SHEN A, et al. Pien Tze Huang inhibits the proliferation, and induces the apoptosis and differentiation of colorectal cancer stem cells via suppression of the Notch1pathway[J]. Oncology Reports, 2016, 35(1):511-517.
    [85] ZHOU P, WANG C, HU Z, et al. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-kappaB/slug/E-cadherin pathway[J]. BioMed Central Cancer, 2017, 17:813.
    [86] BEHRENS J, LUSTIG B. The Wnt connection to tumorigenesis[J]. The International Journal of Developmental Biology, 2004,48(5-6):477-487.
    [87] WILLERT K, JONES K A. Wnt signaling:is the party in the nucleus[J]. Genes&Development, 2006, 20(11):1394-1404.
    [88] YANG P, LI Z, WANG Y, et al. Secreted pyruvate kinase M2facilitates cell migration via PI3K/Akt and Wnt/β-catenin pathway in colon cancer cells[J]. Biochemical and Biophysical Research Communications, 2015, 459(2):327-332.
    [89] FRE S, PALLAVI S K, HUYGHE M, et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine[J]. Proceedings of the National Academy of Sciences USA, 2009, 106(15):6309-6314.
    [90] RODILLA V, VILLANUEVA A, OBRADOR-HEVIA A, et al.Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer[J]. Proceedings of the National Academy of Sciences USA, 2009, 106(15):6315-6320.
    [91] ROY S, MAJUMDAR A P. Signaling in colon cancer stem cells[J]. Journal of Molecular Signaling, 2012, 7:11.
    [92] ISHIGURO H, OKUBO T, KUWABARA Y, et al. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer[J].Oncotarget, 2017, 8(36):60378-60389.
    [93] KWON C, CHENG P, KING I N, et al. Notch post-translationally regulatesβ-catenin protein in stem and progenitor cells[J].Nature Cell Biology, 2011, 13(10):1244-1251.
    [94] KIM H A, KOO B K, CHO J H, et al. Notch1 counteracts WNT/beta-catenin signaling through chromatin modification in colorectal cancer[J]. The Journal of Clinical Investigation, 2012,122(9):3248-3259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700