用户名: 密码: 验证码:
硼掺杂微介孔碳球对镉的吸附特性及机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption Characteristics and Mechanism of Cadmium by Boron-doped Micro-mesoporous Carbon Spheres
  • 作者:陈锋 ; 张谋 ; 朱颖 ; 周正文 ; 和晶亮 ; 杜江 ; 马培
  • 英文作者:CHEN Feng;ZHANG Mou;ZHU Ying;ZHOU Zhengwen;HE Jingliang;DU Jiang;MA Pei;School of Resource and Environment, Henan University of Engineering;
  • 关键词:硼掺杂 ; 微介孔 ; ; 吸附特性 ; 机理
  • 英文关键词:boron-doped;;micro-mesoporous;;cadmium;;adsorption characteristics;;mechanism
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:河南工程学院资源与环境学院;
  • 出版日期:2019-06-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金青年基金项目(41401549);; 河南省科技攻关计划项目(172102310073);; 河南省高等学校重点科研项目(19A610004);; 2019年度河南省青年人才托举工程项目;; 河南工程学院博士基金项目(D2017011)
  • 语种:中文;
  • 页:127-134
  • 页数:8
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:X703.1
摘要
含镉(Cd~(2+))废水不仅来源广泛且毒性强,易对生态环境及人类健康造成极大危害,因此研究水中Cd~(2+)的去除具有重要意义。以蔗糖为碳源,硼酸为掺杂剂,利用水热和化学活化相结合的方法制备了硼掺杂微介孔碳球(boron-doped micro-mesoporous carbon spheres,B-MMPC),并首次研究了硼掺杂量、吸附时间、pH、吸附剂质量、初始质量浓度与温度对Cd~(2+)吸附效果的影响。结果表明,硼掺杂有利于提升碳材料对Cd~(2+)的吸附效果,B-MMPC-3吸附Cd~(2+)的最佳pH=5,12 h基本达到吸附平衡,温度升高对吸附有利。当碳投加量为40 mg,p H=5,Cd~(2+)初始质量浓度为110 mg·L~(-1),取50 mL Cd~(2+)溶液,在298 K下吸附12 h后,B-MMPC-3对Cd~(2+)的吸附量高达41.9 mg·g~(-1);且在相同实验条件下,温度升高到308 K和318K时,B-MMPC-3对Cd~(2+)的吸附量分别是42.9mg·g~(-1)和43.3mg·g~(-1)。利用扫描电镜(SEM)、X射线能谱(EDS)、比表面积(BET)、红外光谱(FTIR)和拉曼光谱(Raman)表征吸附Cd~(2+)前后B-MMPC-3的形貌结构证实,B-MMPC-3为具有微介孔结构的碳球,直径为1-6μm,样品中硼、碳和氧的质量分数分别为6.46%、90.43%和3.11%,比表面积和孔体积分别为672.3m2·g~(-1)和0.36cm3·g~(-1),表面存在着丰富的含氧和含硼官能团。而且,提出了B-MMPC-3对Cd~(2+)的吸附机理主要有静电吸引、孔隙吸附以及O-B-O、C=O、-OH等官能团络合。B-MMPC-3对Cd~(2+)的吸附取得了较好的效果,有利于促进B-MMPC-3在其他重金属废水(铅、铜、铬、砷等)或印染废水(亚甲基蓝、橙黄G、甲基紫等)领域中的应用。
        Cadmium-containing wastewater(Cd~(2+)) comes from a variety of sources and has strong toxicity, which is easy to cause great harm to ecological environment and human health. Therefore, it is of great significance to study the removal of Cd~(2+) from wastewater. Boron-doped micro-mesoporous carbon spheres(B-MMPC) were prepared by a combined hydrothermal and chemical activation method using sucrose and boric acid as carbon source and doping agent in this work. The effects of boron-doping amount,adsorption time, pH, the mass of adsorbent, as well as initial concentration and temperature on the adsorption efficiency of Cd~(2+) were then studied for the first time. The results showed that the boron-doping of carbon materials could improve the adsorption efficiency of Cd~(2+). The optimal pH value for Cd~(2+) adsorption by B-MMPC-3 was equal to 5, the adsorption equilibrium was reached basically at 12 h, and high temperature was beneficial to the adsorption. When the dosage was 40 mg, pH was 5, the Cd~(2+) initial concentration was 110 mg·L~(-1), the volume of the solution was 50 mL, and the adsorption capacity of Cd~(2+) by B-MMPC-3 reached 41.9 mg·g~(-1) at298 K for 12 h. Furthermore, under the same experimental conditions, when the temperature was increased to 308 K and 318 K, the adsorption capacity of Cd~(2+) by B-MMPC-3 was 42.9 mg·g~(-1) and 43.3 mg·g~(-1) respectively. The morphology and structure of B-MMPC-3 before and after adsorption of Cd~(2+) was characterized by scanning electron microscopy(SEM), X-ray energy dispersive analysis(EDS), Brunauer-Emmett-Teller(BET), Fourier transform infrared spectrum(FTIR), and Raman spectroscopy(Raman). The results displayed that B-MMPC-3 was carbon spheres with micro-mesoporous structure, the diameter of spheres was 1-6 μm, the weight percentages of boron, carbon and oxygen in the samples are 6.46%, 90.43% and 3.11%, respectively. The specific surface area and pore volume was respectively 672.3 m2·g~(-1) and 0.36 cm3·g~(-1), and the surface has abundant oxygen-containing and boron-containing functional groups. Moreover, the adsorption mechanism of Cd~(2+) by B-MMPC-3 was also proposed to be electrostatic attraction, pore adsorption, and functional groups complexation of O-B-O, C=O, and-OH. In this paper, the adsorption of Cd~(2+) by B-MMPC-3 showed good results, which was conducive to promoting the application of B-MMPC-3 in the fields of other heavy metal wastewater(lead, copper, chromium, arsenic, etc.) or dyeing wastewater(methylene blue, orange G, methyl violet, etc.).
引文
AGRAWAL A,SAHU K K,2006.Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue[J].Journal of Hazardous Materials,137(2):915-924.
    CHAND P,SHIL A K,SHARMA M,et al.,2014.Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace:Mechanism,kinetics,and thermodynamics[J].International Biodeterioration&Biodegradation,90(4):8-16.
    CHENG S,ZHANG L B,XIA H Y,et al.,2017.Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling[J].RSC Advances,7(44):27331-27341.
    DAWOOD S,SEN T K,2012.Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent:equilibrium,thermodynamic,kinetics,mechanism and process design[J].Water research,46(6):1933-1946.
    DE S,BALU A M,VAN D W J C,et al.,2015.Biomass-Derived Porous Carbon Materials:Synthesis and Catalytic Applications[J].Cheminform,7(11):1608-1629.
    GAO Z M,BANDOSZ T J,ZHAO Z B,et al.,2008.Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials[J].Langmuir the Acs Journal of Surfaces&Colloids,24(20):11701-11710.
    GAVRIS G,CARABAN A,STANASEL O,et al.,2013.Cadmium ions recovery by chemical precipitation method from rezidual solutions of galvanic plating[J].Journal of Sustainable Energy Engineering,4(1):1-5.
    KUMAR P S,RAMAKRISHNAN K,KIRUPHA S D,et al.,2010.Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk[J].Brazilian Journal of Chemical Engineering,27(2):283-284.
    LI Y C,LIU J,YUAN Q H,et al.,2016.A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water[J].RSC Advances,6(51):45041-45048.
    ROZYCKA D,LACH K,1999.Studies on ion-exchange removal of cadmium from phosphoric acid[J].Przemysl Chemiczny,78(1):20-23.
    SAHOO M,SREENA K P,VINAYAN B P,et al.,2015.Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J].Materials Research Bulletin,61:383-390.
    SARADA B,PRASAD M K,KUMAR K K,et al.,2014.Cadmium removal by macro algae Caulerpa fastigiata:Characterization,kinetic,isotherm and thermodynamic studies[J].Journal of Environmental Chemical Engineering,2(3):1533-1542.
    SARI A,TUZEN M,2008.Biosorption of cadmium(II)from aqueous solution by red algae(Ceramium virgatum):equilibrium,kinetic and thermodynamic studies[J].Journal of Hazardous Materials,157(2):448-454.
    SEMERJIAN L,2010.Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust[J].Journal of Hazardous Materials,173(1-3):236-242.
    SHAKER M A,2015.Thermodynamics and kinetics of bivalent cadmium biosorption onto nanoparticles of chitosan-based biopolymers[J].Journal of the Taiwan Institute of Chemical Engineers,47:79-90.
    SITKO R,TUREK E,ZAWISZA B,et al.,2013.Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J].Dalton transactions,42(16):5682-5689.
    TRIPATHI P K,LIU M,ZHAO Y,et al.,2014.Enlargement of uniform micropores in hierarchically ordered micro-mesoporous carbon for high level decontamination of bisphenol A[J].Journal of Materials Chemistry A,2(22):8534-8544.
    WANG Z H,SHEN D K,SHEN F,et al.,2017.Equilibrium,kinetics and thermodynamics of cadmium ions(Cd2+)removal from aqueous solution using earthworm manure-derived carbon materials[J].Journal of Molecular Liquids,241:612-62.
    YANG G D,LIN T,ZENG G M,et al.,2015.Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon[J].Chemical Engineering Journal,259:854-864.
    YANG Z,YAO Z,LI G,et al.,2011.Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J].ACS nano,6(1):205-211.
    程启明,黄青,刘英杰,等,2014.花生壳与花生壳生物炭对镉离子吸附性能研究[J].农业环境科学学报,33(10):2022-2029.CHENG Q M,HUANG Q,LIU Y J,et al.,2014.Adsorption of cadmium(Ⅱ)on peanut shell and its biochar[J].Journal of Agro-Environment Science,33(10):2022-2029.
    杜文怡,2017.牛骨基分级多孔炭材料的制备及其吸附性能研究[D].北京:北京化工大学.DU W Y,2017.Hierarchical porous carbon derived from cattle bone and their adsorption properties[D].Beijing:Beijing University of Chemical Technology.
    公绪金,李伟光,张妍妍,等,2011.活性炭吸附水中六价铬机理及影响因素[J].山东建筑大学学报,26(4):396-402.GONG X J,LI W G,ZHANG Y Y,et al.,2011.Adsorption mechanism and influence factors of activated carbons for the removal of chromium(VI)from water[J].Journal of Shandong Jianzhu University,26(4):396-402.
    李云倩,2017.功能化多孔碳材料的制备及其应用研究[D].石家庄:河北科技大学.LI Y Q,2017.Study on preparation and application of the functionalized porous carbon materials[D].Shijiazhuang:Hebei University of Science and Technology.
    石夏颖,2014.油料作物生物炭的制备、表征及其对Cr(Ⅵ)和Cu(Ⅱ)的吸附性能研究[D].兰州:兰州交通大学.SHI X Y,2014.Preparation and characterization of biochars derived from oil crops and its adsorptive properties for Cr(VI)and Cu(Ⅱ)[D].Lanzhou:Lanzhou Jiaotong University.
    孙骏婷,2017.蚕茧基分级多孔炭材料的制备及其应用研究[D].北京:北京化工大学.SUN J T,2017.The preparation and application of the hierarchically porous carbon materials derived from silkworm cocoon[D].Beijing:Beijing University of Chemical Technology.
    王艳娜,2017.改性丝瓜络对水体中六价铬的吸附特性研究[D].济南:山东师范大学.WANG Y N,2017.The adsorption characteristics of hexavalent chromium in wastewater by modified luffa sponge[D].Jinan:Shandong Normal University.
    魏同业,2016.生物质基多孔碳材料的制备与应用[D].湘潭:湘潭大学.WEI T Y,2016.The preparation and application of biomass derived-porous carbon materials[D].Xiangtan:Xiangtan University.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700