用户名: 密码: 验证码:
1~3 nm颗粒物在粒径分布测量仪中的通过效率研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Penetration of 1~3 nm particles through a diethylene glycol scanning mobility particle spectrometer (DEG-SMPS)
  • 作者:薛墨 ; 傅月芸 ; 蔡润龙 ; 蒋靖坤 ; 郝吉明
  • 英文作者:XUE Mo;FU Yueyun;CAI Runlong;JIANG Jingkun;HAO Jiming;State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University;
  • 关键词:1~3 ; nm颗粒物 ; 通过效率 ; 扫描电迁移率粒径谱仪 ; 等效管长
  • 英文关键词:1~3 nm particles;;penetration efficiency;;scanning mobility particle spectrometer;;equivalent length
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:清华大学环境学院环境模拟与污染控制国家重点联合实验室;
  • 出版日期:2019-03-20 15:07
  • 出版单位:环境科学学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金面上项目(No.21896094)
  • 语种:中文;
  • 页:60-66
  • 页数:7
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X513;X831
摘要
基于二甘醇的扫描电迁移率粒径谱仪(DEG-SMPS)是常用的1~3 nm颗粒物粒径分布测量系统.目前对1~3 nm颗粒物在该系统中通过效率的量化不够准确,这给大气颗粒物粒径分布的测量带来了较大的不确定性.本文研究了1~3 nm颗粒物和离子在直管、弯管以及气溶胶中和器等系统组件中的通过效率,并使用等效管长法来量化颗粒物在这些组件单元中的通过效率.研究表明,1~3 nm颗粒物在直管内的通过效率不受颗粒物电性影响,且可以由Gormley-Kennedy (G-K)方程估算.当采样流量为2.5 L·min~(-1)时,DEG-SMPS系统中总等效管长约为433 cm,其中气溶胶中和器的等效管长为160 cm,弯头的等效管长为33 cm.
        Diethylene glycol scanning mobility particle spectrometer(DEG-SMPS) system has been used for measuring the size distribution of 1~3 nm particles. However, penetration efficiency of 1~3 nm particles in DEG-SMPS is not accurately calculated, which increases the uncertainty of the measured 1~3 nm particle size distributions. In this study, the penetration efficiencies of 1~3 nm tungsten oxide particles and ions through different devices before entering the detector, including straight tubes, elbows, and an aerosol neutralizer are calibrated and the equivalent length method is used to describe particle penetration through these devices. The penetration efficiency through a straight tube can be estimated using the Gormley-Kennedy formula and it is negligibly affected by the charging polarity. At the sampling flow rate of 2.5 L·min~(-1), the equivalent length for the whole DEG-SMPS system is 433 cm, and for aerosol neutralizer and elbows are 160 cm and 33 cm, respectively.
引文
Alonso M,Kousaka Y,Hashimoto T,et al.1997.Penetration of nanometer-sized aerosol particles through wire screen and laminar flow tube [J].Aerosol Science and Technology,27(4):471-480
    Cai R,Chen D R,Hao J,et al.2017.A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing [J].Journal of Aerosol Science,106:111-119
    Covert D,Wiedensohler A,Russell L.1997.Particle charging and transmission efficiencies of aerosol charge neutralizes [J].Aerosol Science and Technology,27(2):206-214
    De la Moja J F,Kozlowski J.2013.Hand-held differential mobility analyzers of high resolution for 1~30 nm particles:design and fabrication considerations [J].Journal of Aerosol Science,57(2):45-53
    Fu Y,Xue M,Cai R,et al.2019.Theoretical and experimental analysis of the core sampling method:Reducing diffusional losses in aerosol sampling line[J].Aerosol Science and Technology,53(7):793-801
    Gormley P G,Kennedy M.1948.Diffusion from a stream flowing through a cylindrical tube [J].Procroyirish Acada,52:163-169
    Jiang J,Chen M,Kuang C,et al.2011.Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm [J].Aerosol Science and Technology,45(4):510-521
    Kangasluoma J,Franchin A,Duplissy J,et al.2016.Operation of the airmodus A11 nano condensation nucleus counter at various inlet pressures and various operation temperatures,and design of a new inlet system [J].Atmospheric Measurement Techniques,9(7):2977-2988
    Ku B K,Mora J F D L.2009.Relation between electrical mobility,mass,and size for nanodrops 1~6.5 nm in diameter in air [J].Aerosol Science and Technology,43(3):241-249
    Li Z,Wang H.2003.Drag force,diffusion coefficient,and electric mobility of small particles.I.Theory applicable to the free-molecule regime[J].Physical Review E,68(6):061206
    Pui D Y H,Romay-Novas F,Liu B Y H.1987.Experimental study of particle deposition in bends of circular cross section [J].Aerosol Science and Technology,7(3):301-315
    Tammet H.1995.Size and mobility of nanometer particles,clusters and ions [J].Journal of Aerosol Science,26(3):459-475
    Tammet H.2012.The function-updated millikan model:a tool for nanometer particle size-mobility conversions [J].Aerosol Science and Technology,46(10):i-iv
    Ude S,Mora J F D L.2005.Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides [J].Journal of Aerosol Science,36(10):1224-1237
    Wang H.2010.Transport properties of small spherical particles [J].Annals of the New York Academy of Sciences,1161(1):484-493
    Wang J,Flagan R C,2002.Seinfeld J H.Diffusional losses in particle sampling systems containing bends and elbows [J].Journal of Aerosol Science,33:843-857
    Wilson S R,Liu Y,Matida E A,et al.2011.Aerosol deposition measurements as a function of reynolds number for turbulent flow in a ninety-degree pipe bend [J].Aerosol Science and Technology,45(3):364-375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700