用户名: 密码: 验证码:
Bernal-Stacked双层石墨烯1.06μm谐振增强型光电探测器设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design method of Bernal-Stacked bilayer graphene 1.06 μm resonance-enhanced photodetector
  • 作者:牛海莎 ; 祝连庆 ; 刘凯铭
  • 英文作者:NIU Hai-Sha;ZHU Lian-Qing;LIU Kai-Ming;Institute of instrument science and photoelectric engineering,Beijing Information Science and Technology University;Institute of instrument science and photoelectric engineering,Beihang University;
  • 关键词:探测器 ; 双层石墨烯 ; 谐振增强 ; 电磁场传输理论
  • 英文关键词:photodetector;;bilayer graphene;;resonance enhancement;;electromagnetic field transmission theory
  • 中文刊名:红外与毫米波学报
  • 英文刊名:Journal of Infrared and Millimeter Waves
  • 机构:北京信息科技大学仪器科学与光点工程学院;北京航空航天大学仪器科学与光点工程学院;
  • 出版日期:2019-02-15
  • 出版单位:红外与毫米波学报
  • 年:2019
  • 期:01
  • 基金:教育部“长江学者与创新团队发展计划”项目资助(IRT_16R07)~~
  • 语种:中文;
  • 页:93-98
  • 页数:6
  • CN:31-1577/TN
  • ISSN:1001-9014
  • 分类号:TN1
摘要
石墨烯对光的吸收率较低,通过与光学谐振腔结合限制光场,可有效提高石墨烯探测器件对入射光的吸收.以电磁场传输理论为基础,推导了双层石墨烯光学谐振腔中的光场分布,建立了谐振增强型光电探测器传输矩阵数理模型,对Bernal-Stacked双层石墨烯的谐振增强型光电探测器结构参数进行数值计算,并对探测器性能进行分析.结果表明,设计的探测波长为1. 06μm谐振增强结构光电探测器,双层石墨烯的光吸收率达到96. 78%,大幅提升了对微弱光信号的探测能力.
        Graphene has a lowabsorption rate of light. By combining with an optical resonant cavity to restrict the light field,the absorption rate of the graphene detector element can be effectively improved.Based on the theory of electromagnetic field transmission,the optical field distribution in the bilayer graphene optical resonator is deduced,a mathematical model for the transmission matrix of the resonant enhanced photodetector is established,and a resonant enhanced photodetector for the Bernal-Stacked bilayer graphene is established. The structural parameters are numerically calculated and the detector performance is analyzed. The results showthat,the optical absorption rate of bilayer graphene reaches up to 96. 78% for a 1. 06 μm wavelength resonant enhanced photodetector,which greatly improves the detection ability of weak optical signals.
引文
[1]Novoselov K S,Geim A K,Morozov S,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,5696(306):666-669.
    [2]Novoselov K S,Fal'Ko V I,Colombo L,et al. A roadmap for graphene[J]. Nature,2012,490(7419):192.
    [3]Yoo J J,Balakrishnan K,Huang J,et al. Ultrathin Planar Graphene Supercapacitors[J]. Nano Letters,2011,11(4):1423-7.
    [4]Zhang L,Ding Z C,Tong T,et al. Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications.[J]. Nanoscale,2017,9(10):3524.
    [5]Jung S C,Kang Y J,Yoo D J,et al. Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery[J]. Journal of Physical Chemistry C,2016,120(25).
    [6]Zhou Peng,Wei Hong-Qiang,SUN Hai-Tao,et al. High-k gate oxides integration of graphene based infrared detector[J]. J. Infrared Millim. Waves,(周鹏,魏红强,孙清清,等.石墨烯基红外探测器的高k栅氧集成.红外与毫米波学报),2012,31(2):118-121.
    [7]Mueller T,Xia F,Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics,2010,4(5):297-301.
    [8]Echtermeyer T J,Britnell L,Jasnos P K,et al. Strong plasmonic enhancement of photovoltage in graphene.[J].Nature Communications,2011,2(1):458.
    [9]Wang X,Cheng Z,Xu K,et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J].Nature Photonics,2013,7(11):888-891.
    [10]Engel M,Steiner M,Lombardo A,et al. Light–matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications,2012,3(2):906.
    [11]Furchi M,Urich A,Pospischil A,et al. Microcavity-integrated graphene photodetector[J]. Nano Lett,2012,12(6):2773-2777.
    [12]Zeng L,Xie C,Tao L,et al. Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector[J]. Optics Express,2015,23(4):4839-46.
    [13]Liberato S D. Perspectives for gapped bilayer graphene polaritonics[J]. Physics,2015,92.
    [14]LI Jia-Bin,LIU Hong-Xia,WU Lei. The photoelectric property of graphene modified by boron and nitrogen atoms from density functional theory calculation[J]. J. Infrared Millim. Waves,(李佳斌,刘红侠,吴磊.第一性原理计算硼和氮原子对石墨烯光电性能的调制.红外与毫米波学报),2018,37(1):25-29.
    [15]Xu Shicai,Studies of Graphene on Preparation,Characterization,Optoelectronic Properties and Applications[D],Shandong Normal University,(许士才.石墨烯的制备、表征及光电性质应用研究.山东师范大学),2014.
    [16]Vincenti M A,De C D,Grande M,et al. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect.[J]. Optics Letters, 2013, 38(18):3550.
    [17]T. Siefke,S. Kroker,K. Pfeiffer,et al.. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range, Adv. Opt. Mater.2016,4:1780-1786.
    [18]L. Gao,F. Lemarchand,M. Lequime. Refractive index determination of Si O2layer in the UV/Vis/NIR range:spectrophotometric reverse engineering on single and bilayer designs,J. Europ. Opt. Soc. Rap. Public. 2013,8:13010.
    [19]R. Boidin,T. Halenkovi c,V. Nazabal,et al.. Pulsed laser deposited alumina thin films,Ceramics International.2016,42:1177-1182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700