用户名: 密码: 验证码:
上海市公园湖泊表层沉积物中汞的特征及其污染评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Mercury in Surface Sediments of Lakes from Parks in Shanghai City and Its Environmental Pollution Assessment
  • 作者:崔鑫 ; 靳雯佳 ; 王永杰 ; 周立旻 ; 郑祥民
  • 英文作者:CUI Xin;JIN Wen-jia;WANG Yong-jie;ZHOU Li-min;ZHENG Xiang-min;School of Geographic Sciences, East China Normal University;
  • 关键词:上海市 ; 公园湖泊 ; 沉积物 ; ; 风险评估
  • 英文关键词:Shanghai;;lakes;;sediments;;mercury;;pollution risk assessment
  • 中文刊名:长江流域资源与环境
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:华东师范大学地理科学学院;
  • 出版日期:2019-03-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(41771508)
  • 语种:中文;
  • 页:171-177
  • 页数:7
  • CN:42-1320/X
  • ISSN:1004-8227
  • 分类号:X524;X824
摘要
以上海市中心城区和郊区合计24座水景公园湖泊表层沉积物为研究对象,测定其中的总汞(THg)和甲基汞(MeHg)等参数,并结合地统计学方法,研究城市尺度汞的空间分布特征及其潜在风险。结果表明:中心城区公园湖泊表层沉积物中THg(平均值222.6±138.4μg/kg)与MeHg含量(平均值0.52±0.51μg/kg)均明显大于郊区(p<0.01)表层沉积物中THg(平均值91.8±87.1μg/kg)与MeHg含量(平均值0.29±0.26μg/kg),这种空间分布的差异可能是城市小气候效应及人为汞排放两者共同长期作用下的结果;沉积物中THg、MeHg含量与烧失量呈显著正相关(p<0.05),而甲基汞/总汞比值(MeHg/THg)与烧失量呈弱负相关关系,表明了公园沉积物中有机质可能是控制汞转化的主要因素。沉积物中MeHg含量普遍较低,反映了沉积物中汞的活性相对较低。地累积指数评价进一步表明,上海市公园湖泊表层沉积物中汞的生态危害风险较低。
        To understand the spatial distribution of total mercury(THg) and methyl mercury(MeHg) levels in sediments of park lakes in Shanghai City, the samples were collected from total 24 park lakes, including the central urban(CU) and the suburbs(SU) areas, respectively. The concentrations of THg and MeHg, and other parameters in sediments were determined and the risk of Hg pollution was assessed using geo-accumulation index methods. The results showed that the concentrations of THg(mean: 222.6 ± 138.4 μg/kg) and MeHg(mean: 0.52 ± 0.51 μg/kg) in the surface sediments of lakes in CU were significantly higher than those(mean: 91.8 ± 87.1 μg/kg THg; mean: 0.29 ± 0.26 μg/kg MeHg) in SU(p< 0.01). Moreover, THg and MeHg in the sediments were positively correlated with loss on ignition(LOI)(p< 0.05), while a weak correlation between the ratio of MeHg to THg(MeHg/THg) and LOI, indicating that organic matter in sediments may play an important role in inhibiting Hg methylation. The geo-accumulation index of THg revealed that lakes in CU was slightly polluted by Hg, however, lakes in SU was not polluted, indicating that the potential environmental risk of Hg in the surface sediments of park lakes could be low in Shanghai City.
引文
[1] PACYNA J M, TRAVNIKOV O, DE SIMONE F, et al. Current and future levels of mercury atmospheric pollution on a global scale[J]. Atmospheric Chemistry & Physics, 2016, 16:1-35.
    [2] COULTER M A. Minamata Convention on Mercury[J]. International Legal Materials, 2016, 55(3):582-616.
    [3] OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.[J]. Nature, 2017, 547(7662):201.
    [4] WANG X, BAO Z, LIN C J, et al. Assessment of global mercury deposition through litterfall.[J]. Environmental Science & Technology, 2016, 50(16):8548.
    [5] 童银栋, 张巍, 邓春燕,等. 大气汞均相和非均相化学反应过程研究进展[J]. 环境科学学报, 2016, 36(5):1515-1523.TONG Y D, ZHANG W, DENG C Y, et al. A review of homogeneous and heterogeneous reactions of atmospheric mercury[J]. Acta Scientiae Circumstantiae, 36(5):1515-1523.
    [6] BAILON M X, DAVID A S, PARK Y, et al. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea[J]. Environmental Monitoring & Assessment, 2018, 190(5):274.
    [7] KOROSI J B, GRIFFITHS K, SMOL J P, et al. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic[J]. Environmental Pollution, 2018(241):459-467.
    [8] ZHAO S, DUAN Y, YAO T, et al. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant[J]. Fuel, 2017(199):653-661.
    [9] 李仲根, 冯新斌, 李平,等. 垃圾填埋场大气汞的浓度和形态[J]. 环境科学研究, 2009, 22(4):450-455.LI Z G, FENG X B, LI P, et al. Environmental effects of mercury around a large scale MSW incineration plant[J]. Environmental Science, 2005, 26(1):196-199.
    [10] FU X W, ZHANG H, WANG X, et al. Observations of atmospheric mercury in China: a critical review[J]. Atmospheric Chemistry & Physics Discussions, 2015, 15(16):11925-11983.
    [11] 冯新斌, 仇广乐, 付学吾,等. 环境汞污染[J]. 化学进展, 2009, 21(2):436-457.FENG X B, QIU G L, FU X W, et al. Mercury pollution in the environment[J]. Progress in Chemistry, 2009, 21(2):436-457.
    [12] MITCHELL C, GILMOUR C. Methylmercury production in a Chesapeake Bay salt marsh[J]. Journal of Geophysical Research Biogeosciences, 2010, 115(2):4-14.
    [13] 刘婷, 郑祥民, 刘飞,等. 上海市香樟树叶总汞含量时空分布及影响因素[J]. 环境化学, 2017, 36(3):486-495.LIU T, ZHENG X M, LIU F, et al. Seasonal and spatial distribution of mercury contents in Camphora leaves and its influencing factors in Shanghai[J]. Environmental Chemistry, 2017, 36(3):486-495.
    [14] 王馨慧, 单保庆, 唐文忠,等. 典型城市河流表层沉积物中汞污染特征与生态风险[J]. 环境科学学报, 2016, 36(4):1153-1159.WANG X H, SHAN B Q, TANG W Z, et al. Pollution characteristics and ecological risk of mercury in the surface sediment of a typical urban river[J]. Acta Scientiae Circumstantiae, 2016, 36(4):1153-1159.
    [15] 王乃姗, 张曼胤, 崔丽娟,等. 河北衡水湖湿地汞污染现状及生态风险评价[J]. 环境科学, 2016, 37(5):1754-1762.WANG N S, ZHANG M Y, CUI L J, et al.Contamination and ecological risk assessment of mercury in Hengshuihu Wetland, Hebei Province[J]. Environmental Science, 2016, 37(5):1754-1762.
    [16] WANG Y J, DANG F, EVANS R D, et al. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil[J]. Scientific Reports, 2016, 6(6):19477-19487.
    [17] 吴婷婷, 王明猛, 陈旭锋,等. 唐山陡河水库沉积物汞的分布、来源及污染评价[J]. 环境科学, 2017, 38(3):979-986.WU T T, WANG M M, CHEN X F, et al. Distributions, Sources and pollution assessment of Hg in sediment of Douhe Reservoir in Tangshan City[J]. Environmental Science, 2017, 38(3):979-986.
    [18] 国家环境保护局. 中国土壤元素背景值[M]. 北京:中国环境科学出版社,1990:354-357.CEMS. Background values of elements in soils of China[M]. Beijing: China Environment Press, 1990.
    [19] 曹宏杰, 王立民, 罗春雨,等. 三江平原地区农田土壤中几种重金属空间分布状况[J]. 生态与农村环境学报, 2014, 30(2):155-161.CAO H J, WANG L M, LUO C Y,et al, Spatial distribution of heavy metals in agricultural soil in Sanjiang Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(2):155-161.
    [20] YANG J, CHEN L, SHI W L, et al. Mercury distribution in sediment along urban-rural gradient around Shanghai (China): Implication for pollution history[J]. Environmental Science & Pollution Research, 2015, 22(3):1697-1704.
    [21] 周淑贞, 郑景春, 邵建民. 上海城市气候中的混浊岛效应[J]. 地理科学, 1988, 8(4):305-312.ZHOU S Z, ZHENG J C, SHAO J M, et al. The turbidity island effect in Shanghai urban climate[J].Scientia Geographica Sinica, 1988, 8(4):305-312.
    [22] AGARWAL M, TANDON A. Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal[J]. Applied Mathematical Modelling, 2010, 34(9):2520-2530
    [23] LIN C J, PEHKONEN S O. Two-phase model of mercury chemistry in the atmosphere[J]. Atmospheric Environment, 1998, 32(14):2543-2558.
    [24] 段玉森, 张懿华, 王东方,等. 我国部分城市臭氧污染时空分布特征分析[J]. 环境监测管理与技术, 2011,23(z1):34-39.DUAN Y S, ZHANG Y H, WANG D F, et al. Spatial-temporal patterns analysis of ozone pollution in several cities of China[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(z1):34-39.
    [25] DUONG C N, SCHLENK D, CHANG N I, et al. The effect of particle size on the bioavailability of estrogenic chemicals from sediments[J]. Chemosphere, 2009, 76(3):395-401.
    [26] BARKAY T, GILLMAN M, TURNER R R. Effects of dissolved organic carbon and salinity on bioavailability of mercury[J]. Applied & Environmental Microbiology, 1997, 63(11):4267-4271.
    [27] 何天容, 冯新斌, 郭艳娜,等. 红枫湖沉积物中汞的环境地球化学循环[J]. 环境科学, 2008, 29(7):1768-1774.HE T R, FENG X B, GUO Y N, et al.Geochemical cycling of mercury in the sediment of Hongfeng Reservior[J]. Environmental Science, 2017, 38(3):979-986.
    [28] 白薇扬, 冯新斌, 何天容,等. 阿哈水库沉积物总汞及甲基汞分布特征[J]. 生态学杂志, 2011, 30(5):976-980.BAI W Y, FENG X B, HE T R, et al.Distribution patterns of total mercury and methyl mercury in Aha Reservoir sediment[J]. Chinese Journal of Ecology, 2011, 30(5):976-980.
    [29] GRAY J E, HINES M E. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA[J]. Chemical Geology, 2009, 258(3):157-167.
    [30] HINES N A, BREZONIK P L, ENGSTROM D R. Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota[J]. Environmental Science & Technology, 2004, 38(24):6610-6617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700