用户名: 密码: 验证码:
耐碱产酸菌筛选及其在赤泥碱性调控中的应用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation of an acid producing Bacillus sp. EEEL02: Potential for bauxite residue neutralization
  • 作者:吴昊 ; 廖嘉欣 ; 朱锋 ; Graeme ; MILLAR ; Ronan ; COURTNEY ; 薛生国
  • 英文作者:WU Hao;LIAO Jia-xin;ZHU Feng;Graeme MILLAR;Ronan COURTNEY;XUE Sheng-guo;School of Metallurgy and Environment, Central South University;Institute for Future Environments, Science and Engineering Faculty, Queensland University of Technology (QUT);Department of Life Sciences, Schrodinger Building, University of Limerick, Co.;
  • 关键词:赤泥 ; 16S ; rDNA ; 苏云金芽孢杆菌 ; 产酸 ; 碱性调控
  • 英文关键词:bauxite residue;;16S rDNA;;Bacillus thuringiensis;;acid production;;pH neutralization
  • 中文刊名:Journal of Central South University
  • 英文刊名:中南大学学报(英文版)
  • 机构:School of Metallurgy and Environment, Central South University;Institute for Future Environments, Science and Engineering Faculty, Queensland University of Technology (QUT);Department of Life Sciences, Schrodinger Building, University of Limerick, Co.;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:02
  • 基金:Projects(41877511,41842020)supported by the National Natural Science Foundation of China;; Project(502221703)supported by the Innovative Project of Independent Exploration of Central South University,China
  • 语种:英文;
  • 页:83-92
  • 页数:10
  • CN:43-1516/TB
  • ISSN:2095-2899
  • 分类号:X758
摘要
赤泥堆场是一种典型矿业废弃地,盐度高,碱性强,对植物生长十分不利。酸碱中和是降低赤泥碱性的主要方法,对堆场植被重建具有重要意义。本研究从赤泥堆场中筛选出1株耐碱产酸细菌EEEL02,经鉴定,该菌株为苏云金芽孢杆菌,从属于芽孢杆菌门。通过单因素试验确定该菌株最佳产酸条件:初始pH为10,盐浓度5%,培养温度25°C;最优发酵培养基组成为葡萄糖2%,蛋白胨0.5%。将EEEL02接种于赤泥中,在最佳培养条件下培养5 d后,赤泥p H从10.26降低至5.62。EEEL02在发酵过程中主要代谢产物为乙酸、丙酸和二氧化碳。微生物发酵产酸过程能有效降低赤泥碱度,为赤泥碱性调控提出一种新思路。
        Bauxite residue deposit area(BRDA) is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity. Microbially-driven neutralization of bauxite residue, based on the microbial acid producing metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes. The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions. Several alkaliphilic acid producing bacteria were isolated in this study. One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02). Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis. The optimized fermentation conditions were as follows: pH 10; NaCl concentration 5%; temperature 25 °C; EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively. Based on optimal fermentation conditions, EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test. Acetic acid, propionic acid and CO2(g) were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism. This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.
引文
[1]XUE Sheng-guo,KONG Xiang-feng,ZHU Feng,HARTLEY W,LI Xiao-fei,LI Yi-wei.Proposal for management and alkalinity transformation of bauxite residue in China[J].Environmental Science and Pollution Research,2016,23(13):12822-12834.DOI:10.1007/s11356-016-6478-7.
    [2]XUE Sheng-guo,WU Yu-jun,LI Yi-wei,KONG Xiang-feng,ZHU Feng,HARTLEY W,LI Xiao-fei,YE Yu-zhen.Industrial wastes applications for alkalinity regulation in bauxite residue:A comprehensive review[J].Journal of Central South University,2019,26(2):268-288.
    [3]ZHU Feng,XUE Sheng-guo,HARTLEY W,HUANG Ling,WU Chuan,LI Xiao-fei.Novel predictors of soil genesis following natural weathering processes of bauxite residues[J].Environmental Science and Pollution Research,2016,23(3):2856-2863.DOI:10.1007/s11356-015-5537-9.
    [4]KONG Xiang-feng,GUO Ying,XUE Sheng-guo,HARTLEY W,WU Chuan,YE Yu-zhen,CHENG Qing-yu.Natural evolution of alkaline characteristics in bauxite residue[J].Journal of Cleaner Production,2017,143:224-230.DOI:10.1016/j.jclepro.2016.12.125.
    [5]KONG Xiang-feng,JIANG Xing-xing,XUE Sheng-guo,HUANG Ling,HARTLEY WILLIAM,WU Chuan,LIXiao-fei.Migration and distribution of saline ions in bauxite residue during water leaching[J].Transactions of Nonferrous Metals Society of China,2018,28(3):534-541.DOI:10.1016/S1003-6326(18)64686-2.
    [6]ZHU Feng,ZHOU Jia-yi,XUE Sheng-guo,HARTLEY W,WU Chuan,GUO Ying.Aging of bauxite residue in association of regeneration:A comparison of methods to determine aggregate stability&erosion resistance[J].Ecological Engineering,2016,92(3):47-54.DOI:10.1016/j.ecoleng.2016.03.025.
    [7]XUE Sheng-guo,ZHU Feng,KONG Xiang-feng,WUChuan,HUANG Ling,HUANG Nan,HARTLEY W.Areview of the characterization and revegetation of bauxite residues(Red mud)[J].Environmental Science and Pollution Research,2016,23(2):1120-1132.DOI:10.1007/s11356-015-4558-8.
    [8]GRAFE M,POWER G,KLAUBER C.Bauxite residue issues:III.Alkalinity and associated chemistry[J].Hydrometallurgy,2011,108(1,2):60-79.DOI:10.1016/j.hydromet.2011.02.004.
    [9]LI Yi-wei,JIANG Jun,XUE Sheng-guo,MILLAR G,KONG Xiang-feng,LI Xiao-fei,LI Meng,LI Chu-xuan.Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue[J].Transactions of Nonferrous Metals Society of China,2018,28:2125-2134.DOI:10.1016/S1003-6326(18)64857-5.
    [10]XUE Sheng-guo,LI Meng,JIANG Jun,GRAEME J M,LIChu-xuan,KONG Xiang-feng.Phosphogypsum stabilization of bauxite residue:Conversion of its alkaline characteristics[J].Journal of Environmental Sciences,2019,77:1-10.DOI:10.1016/j.jes.2018.05.016.
    [11]LI Xiao-fei,YE Yu-zhen,XUE Sheng-guo,JIANG Jun,WUChuan,KONG Xiang-feng,HARTLEY W,LI Yi-wei.Leaching optimization and dissolution behavior of alkaline anions in bauxite residue[J].Transactions of Nonferrous Metals Society of China,2018,28:1248-1255.DOI:10.1016/S1003-6326(18)64763-6.
    [12]ZHU Feng,HOU Jiang-tao,XUE Sheng-guo,WU Chuan,WANG Qiong-li,HARTLEY W.Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J].Land Degradation and Development,2017,28(7):2109-2120.DOI:10.1002/ldr.2737.
    [13]WONG J.Use of waste gypsum in the revegetation on red mud deposits:A greenhouse study[J].Waste Management&Research,1993,11(3):249-256.DOI:10.1006/wmre.1993.1024.
    [14]JONES B E H,HAYNES R J,PHILLIPS I R.Influence of amendments on acidification and leaching of Na from bauxite processing sand[J].Ecological Engineering,2015,84:435-442.DOI:10.1016/j.ecoleng.2015.09.054.
    [15]KONG Xiang-feng,LI Meng,XUE Sheng-guo,HARTLEYW,CHEN Cheng-rong,WU Chuan,LI Xiao-fei,LI Yi-wei.Acid transformation of bauxite residue:Conversion of its alkaline characteristics[J].Journal of Hazardous Materials,2017,324(B):382-390.DOI:10.1016/j.jhazmat.2016.10.073.
    [16]SANTINI T C,KERR J L,WARREN L A.Microbiallydriven strategies for bioremediation of bauxite residue[J].Journal of Hazardous Materials,2015,293:131-157.DOI:10.1016/j.jhazmat.2015.03.024.
    [17]HAMDY M K,WILLIAMS F S.Bacterial amelioration of bauxite residue waste of industrial alumina plants[J].Journal of Industrial Microbiology&Biotechnology,2001,27(4):228-233.DOI:10.1038/sj/jim/7000181.
    [18]SCHMALENBERGER A,O'SULLIVAN O,GAHAN J,COTTER P D,COURTNEY R.Bacterial communities established in bauxite residues with different restoration histories[J].Environmental Science&Technology,2013,47(13):7110-7119.DOI:10.1021/es401124w.
    [19]KRISHNA P,REDDY M S,PATNAIK S K.Aspergillus tubingensis reduces the pH of the bauxite residue(Red mud)amended soils[J].Water,Air,&Soil Pollution,2005,167(1-4):201-209.DOI:10.1007/s11270-005-0242-9.
    [20]BABU A G,REDDY M S.Aspergillus tubingensis improves the growth and native mycorrhizal colonization of bermudagrass in bauxite residue[J].Bioremediation Journal,2011,15(3):157-164.DOI:10.1080/10889868.2011.598486.
    [21]GHOMMIDH C,NAVARRO J M,DURAND G.Acetic acid production by immobilized acetobacter cells[J].Biotechnology Letters,1981,3(2):93-98.DOI:10.1007/bf00145117.
    [22]ROJAN P J,NAMPOOTHIRI K M,NAIR A S,PANDEY A.L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation[J].Biotechnology Letters,2005,27(21):1685-1688.DOI:10.1007/s10529-005-2731-8.
    [23]SARETHY I P,SAXENA Y,KAPOOR A,SHARMA M,SHARMA S K,GUPTA V,GUPTA S.Alkaliphilic bacteria:Applications in industrial biotechnology[J].Journal of Industrial Microbiology&Biotechnology,2011,38(7):769-790.DOI:10.1007/s10295-011-0968-x.
    [24]CALABIA B P,TOKIWA Y,AIBA S.Fermentative production of L:-(+)-lactic acid by an alkaliphilic marine microorganism[J].Biotechnology Letters,2011,33(7):1429-1433.DOI:10.1007/s10529-011-0573-0.
    [25]ZHILINA T N,KEVBRIN V V,TUROVA T P,LYSENKO AM,KOSTRIKINA N A,ZAVARZIN G A.Clostridium alkalicellum sp.nov.,an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region[J].Microbiology,2005,74(5):642-653.DOI:10.1007/s11021-005-0103-y.
    [26]WU Chun-yuan,ZHUANG Li,ZHOU Shun-gui,LIFang-bai,HE Jian.Corynebacterium humireducens sp.nov.,an alkaliphilic,humic acid-reducing bacterium isolated from a microbial fuel cell[J].International Journal of Systematic and Evolutionary Microbiology,2011,61(Pt4):882-887.DOI:10.1099/ijs.0.020909-0.
    [27]NOGUEIRA E W,HAYASH E A,ALVES E,LIMA C A D,ADORNO M T,BRUCHA G.Characterization of alkaliphilic bacteria isolated from bauxite residue in the southern region of minas gerais,Brazil[J].Brazilian Archives of Biology and Technology,2017,60.DOI:10.1590/1678-4324-2017160215.
    [28]PAPPA A,SáNCHEZ-PORRO C,LAZOURA P,KALLIMANIS A,PERISYNAKIS A,VENTOSA A,DRAINAS C,KOUKKOU A I.Bacillus halochares sp.nov.,a halophilic bacterium isolated from a solar saltern[J].International Journal of Systematic and Evolutionary Microbiology,2010,60(6):1432-1436.DOI:10.1099/ijs.0.014233-0.
    [29]ARORA A,KRISHNA P,MALIK V,REDDY M S.Alkalistable xylanase production by alkalitolerant Paenibacillus montaniterrae RMV1 isolated from red mud[J].Journal of Basic Microbiology,2014,54(10):1023-1029.DOI:10.1002/jobm.201300357.
    [30]KRISHNA P,ARORA A,REDDY M S.An alkaliphilic and xylanolytic strain of Actinomycetes Kocuria sp RM1 isolated from extremely alkaline bauxite residue sites[J].World Journal of Microbiology&Biotechnology,2008,24(12):3079-3085.DOI:10.1007/s11274-008-9801-8.
    [31]SANAHUJA G,BANAKAR R,TWYMAN R M,CAPELLT,CHRISTOU P.Bacillus thuringiensis:A century of research,development and commercial applications[J].Plant Biotechnology Journal,2011,9(3):283-300.DOI:10.1111/j.1467-7652.2011.00595.
    [32]SANSINENEA E.Bacillus thuringiensis biotechnology[M].Springer,2012:201-214.
    [33]MENG Ying,XUE Yan-fen,YU Bo,GAO Cheng-hua,MAYan-he.Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp.WL-S20[J].Bioresource Technology,2012,116(4):334-339.DOI:10.1016/j.biortech.2012.03.103.
    [34]LIAO Jia-xin,JIANG Jun,XUE Sheng-guo,CHENGQing-yu,WU Hao,RAJENDRAN M,HARTLEY W,HUANG Long-bin.A novel acid-producing fungus isolated from bauxite residue:The potential to reduce the alkalinity[J].Geomicrobiology Journal,2018,35(10):840-847.DOI:10.1080/01490451.2018.1479807.
    [35]KONG Xiang-feng,TIAN Tao,XUE Sheng-guo,HARTLEYW,HUANG Long-bin,WU Chuan,LI Chu-xuan.Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation[J].Land Degradation&Development,2018,29(1):58-67.DOI:10.1002/ldr.2836.
    [36]KANSO S,GREENE A C,PATEL B K.Bacillus subterraneus sp.nov.,an iron-and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer[J].International Journal of Systematic and Evolutionary Microbiology,2002,52(Pt3):869-874.DOI:10.1099/ijs.0.01842-0.
    [37]TAKAMI H,TAKAKI Y,UCHIYAMA I.Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments[J].Nucleic Acids Research,2002,30(18):3927-3935.DOI:10.1093/nar/gkf526.
    [38]ISHIKAWA M,NAKAJIMA K,ITAMIYA Y,FURUKAWAS,YAMAMOTO Y,YAMASATO K.Halolactibacillus halophilus gen.nov.,sp.nov.and Halolactibacillus miurensis sp.nov.,halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus r RNAgroup 1[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt6):2427-2439.DOI:10.1099/ijs.0.63713-0.
    [39]SARKAR P K,HASENACK B,NOUT M J.Diversity and functionality of Bacillus and related genera isolated from spontaneously fermented soybeans(Indian Kinema)and locust beans(African Soumbala)[J].International Journal of Food Microbiology,2002,77(3):175-186.DOI:10.1016/s0168-1605(02)00124-1.
    [40]KULSHRESHTHA N M,KUMAR A,BISHT G,PASHA S,KUMAR R.Usefulness of organic acid produced by Exiguobacterium sp.12/1 on neutralization of alkaline wastewater[J].The Scientific World Journal,2012,2012(4):345101.DOI:10.1100/2012/345101.
    [41]SANTINI T C,MALCOLM L I,TYSON G W,WARREN LA.pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue[J].Environmental Science&Technology,2016,50(20):11164-11173.DOI:10.1021/acs.est.6b01973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700