用户名: 密码: 验证码:
兴安落叶松林球囊霉素相关土壤蛋白含量对年际间模拟氮沉降的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of GRSP Content to Interannual Simulated Nitrogen Deposition in Larix gmelinii Forest in Greater Khingan Mountains
  • 作者:黄彬彬 ; 邢亚娟 ; 闫国永 ; 王庆贵
  • 英文作者:HUANG Binbin;XING Yajuan;YAN Guoyong;WANG Qinggui;College of Agricultural Resource and Environment, Heilongjiang University;
  • 关键词:球囊霉素相关土壤蛋白 ; 氮沉降 ; 土壤有机质 ; 碳库动态 ; 兴安落叶松
  • 英文关键词:glomalin-related soil protein(GRSP);;nitrogen deposition;;soil organic matter(SOM);;carbon pool dynamic;;Larix gleminii
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:黑龙江大学农业资源与环境学院;
  • 出版日期:2019-03-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(41773075;41575137;31370494;31170421)
  • 语种:中文;
  • 页:22-30
  • 页数:9
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:S714
摘要
球囊霉素相关土壤蛋白(Glomalin-related soil protein,GRSP)的变化情况是评价和指示土壤碳(C)库动态变化的重要指标。了解大气氮(N)沉降增加背景下GRSP的变化机制对于阐明土壤C循环的驱动因素具有重要意义。于2011年5月开始,在大兴安岭进行野外N沉降试验,共设置4个水平N添加处理,分别为对照(Control,0 g·m~(-2)·a~(-1))、低N(LN,2.5 g·m~(-2)·a~(-1))、中N(MN,5 g·m~(-2)·a~(-1))和高N(HN,7.5 g·m~(-2)·a~(-1))处理,探索GRSP对N沉降的影响机制。结果表明,(1)对于易提取球囊霉素(EE-GRSP),所有施N水平都增加了其在土壤中的含量;对于总球囊霉素(T-GRSP),LN和MN表现为显著促进作用(P<0.05),HN表现为抑制作用。(2)T-GRSP与EE-GRSP含量与SOM均表现出显著正相关关系(P<0.05)。施N使GRSO对土壤有机质(SOM)的贡献率增加了0.59%-1.07%。低中水平N沉降(LN和MN)显著促进了土壤有机质(SOM)的积累(P<0.05),高水平N沉降(HN)处理则表现为抑制。此外,大兴安岭兴安落叶松林GRSP对SOM的贡献率相对较低。(3)在气候变化背景下,低中水平N沉降能通过提高GRSP的量促进SOM的累积,而高水平N沉降则通过减少GRSP的量从而降低土壤总SOM。低中水平N沉降可以增加GRSP和SOM含量,进而提高生态系统固C潜力,减缓大气CO_2浓度升高带来的压力。
        The changes of glomalin-related soil protein(GRSP) are important indicators for evaluating and indicating the dynamic changes of soil carbon(C) pool. Understanding the GRSP change mechanism under the background of increasing atmospheric nitrogen(N) deposition is of great significance to elucidate the driving factors of soil C cycle. Therefore, this study conducted field control experiments on the experimental sample site located in Greater Khingan Mountains to explore the influence mechanism of GRSP on N deposition. In the test sample, the N addition treatment was started in May 2011, and a total of four levels of N addition treatment were set, which were control(Control, 0 g·am~(-2)·a~(-1)), low N(LN, 2.5 g·m~(-2)·a~(-1)), medium N(MN, 5 g·m~(-2)·a~(-1)) and high N(HN, 7.5 g·m~(-2)·a~(-1)) treatment. The results showed that,(1) Easy extract glomalin(EE-GRSP) increased in soil of all N levels, and total glomalin(T-GRSP) in LN and MN treatment was significantly promoted(P<0.05), but it showed inhibition in HN treatment.(2)There was a significant positive correlation between the contents of T-GRSP and EE-GRSP and soil organic matter(SOM)(P<0.05).The contribution rate of GRSO to SOM increased by 0.59%-1.07% with N application. Low and medium level N deposition(LN and MN) significantly promoted the accumulation of SOM(P<0.05), while high level N deposition(HN) was inhibited. In addition, the contribution rate of GRSP to SOM of deciduous pine forest in Greater Khingan Mountains was relatively low. And(3) in the context of climate change, low and medium level N deposition could increase the accumulation of SOM by increasing the amount of GRSP,while high level N deposition could reduce the total SOM of soil by reducing the amount of GRSP. This indicates that the low and medium level N deposition can increase GRSP and SOM content, thereby improving the potential of solid C in the ecosystem and alleviating the pressure caused by the increase of atmospheric CO_2 concentration.
引文
BATJES N H,2014.Total carbon and nitrogen in the soils of the world[J].European Journal of Soil Science,65:10-21.
    BAUER G A,BAZZAZ F A,MINOCHA R,et al.,2004.Effects of chronic N additions on tissue chemistry,photosynthetic capacity,and carbon sequestration potential of a red pine(Pinus resinosa Ait.)stand in the NE United States[J].Forest Ecology and Management,196(1):173-186.
    CHEN X M,LIU J X,DENG Q,et al.,2012.Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest[J].Plant and Soil,357(1-2):25-34.
    CHRIS D F,CHRIS D E,NANCY B D,et al.,2017.Long-term nitrogen deposition increases heathland carbon sequestration[J].Science of the Total Environment,592:426-435.
    COMIS D,2002.Glomalin:hiding place for a third of the world’s stored soil carbon[J].Agricultural Research,50(9):4-7.
    DRIVER J D,HOLBEN W E,RILLING M C,2005.Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J].Soil Biology and Biochemistry,37(1):101-106.
    EOM A H,HARTNETT D C,WILSOM G W T,1999.The effect of fire,mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie[J].The American Midland Naturalist,142(1):55-70.
    GARCIA M O,OVASAPYAN T,GREAS M,et al.,2008.Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest[J].Plant and Soil,303:301-310.
    GRUBER N,GALLOWAY J N,2008.An Earth-system perspective of the global nitrogen cycle[J].Nature,451(7176):293-296.
    Hodge A,campbell C D,Fitter AH,2001.Anarbuscular mycarrhizal fungus acceleartes decomposition and acquires nitrogen direct from organic.material[J].Nature,413(6853):297-299.
    JAKOBSEN I,POSENDAHI L,1990.Carbon flow into soil and externall hypheae from roots of mycorrhizal cucumber plants[J].New phytologist,115(1):77-83.
    JUNPPONEN A,TROWBRIDGE J,MANDYAM K,2005.Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition-evidence from rDNAdata[J].Biology and Fertility of Soils,41(4):217-224.
    LAL R,2005.Forest soils and Carbon sequestration[J].Forest Ecology and Management,220(1-3):242-258.
    LIU X J,ZHANG Y,HAN W X,2013.Enhanced nitrogen deposition over China[J].Nature,494(7438):459-462.
    LOVELOCK C E,WRIGHT S F,NICHOLS K A,2004.Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth:An example from a tropical rain forest soil[J].Soil Biology&Biochemistry,36(6):1009-1012.
    MO J M,ZHANG W,ZHU W X,et al.,2007.Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China[J].Plant and Soil,296(1-2):125-135.
    NEWMAN E I,REDDELL P,1987.The distribution of mycorrhizas among families of vascular plants[J].New Phytol,106(4):745-751.
    NICHOLS K A,WRIGHT S F,2006.Carbon and nitroge in operationally defined soil organic matter pools[J].Biology and Fertility of Soils,43(2):215-220.
    OCHOA-HUESO R M,DELGADO-B A,QUWEIZO A,et al.,2016.Climatic conditions,soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands[J].Plant and Soil,399(1-2):271-282.
    PIOTROESKI J,DENICH T,KLIRONOMO J,et al.,2004.The effect of arbuscular mycorrhizas on soil aggregation depend on the inter action between plant and fungal species[J].New phytologist,164(2):365-373.
    RILLIG M C,WRIGHT S F,NICHOLS K A,et al.,2001.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J].Plant Soil,233:167-177.
    RILLIG M C,2004.Arbuscular mycorrhizae,glomalin,and soil aggregation[J].Canadian Journal of Soil Science,84(4):355-363.
    RILLIG M C,MSESTRE F T,LAMIT L J,2003a.Microsite differences in fungal hyphal length,glomalin,and soil aggregate stability in semiarid Mediterranean steppes[J].Soil Biology&Biochemistry,35(9):1257-1260.
    RILLIG M C,RAMSEY W,MORRIS S,et al.,2003b.Glomalin,anarbuscular-mycorrhizal fungal soil protein,responds to land-use change[J].Plant Soil,253(2):293-299.
    RILLIG M C,WRIGHT S F,NICHOLS K A,et al.,2001.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J].Plant and Soil,233(2):167-177.
    SCHLESINGER W H,ANDREWS J A,2000.Soil respiration and the global carbon cycle[J].Biogeochemistry,48(1):7-20.
    SCHREINER R P,BETHLENFALVAY G J,1995.Mycorrhizal interactions in sustainable agriculture[J].Critical reviews in biotechnology,15(3-4):271-285.
    SECILIA J,BAGYARIA D J,1987.Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhizas[J].Canadian Journal Microbiology,33(12):1069-1073.
    SINGH A K,RAI A,SINGH N,2016.Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain[J].Geoderma,277:41-50.
    STADDON P L,JAKOBSEN I,BLUM H,2004.Nitrogen input mediates the effect of free air CO2 enrichment on mycorrhizal fungal abundance[J].Global Change Biology,10:1678-1688.
    STEINBERG P D,RILLIG M C,2003.Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin[J].Soil Biology&Biochemistry,35(1):191-194.
    TRESEDER K K,ALLEN M F,2000.Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition[J].New Phytol,147(1):189-200.
    TRESEDER K K,AllEN M F,2002.Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:A model and field test[J].New Phytol,155(3):507-515.
    TRESEDER K K,CROSS A,2006.Global distributions of Arbuscular Mycorrhizal Fungi[J].Ecosystems,9(2):305-316.
    TRESEDER K K,TUMER K M,2007b.Glomalin in Ecosystems[J].Soil Science Society of America Journal,71:1257-1266.
    TRESEDER K K,TUMER K M,MACK M C,2007a.Mycorrhizal responses to nitrogen fertilization in boreal ecosystems:potential consequences for soil carbon storage[J].Global Change Biology,13(1):78-88.
    WANG H,HALLl C A S,2004.Modeling the effects of Hurricane Hugo on spatial and temporal variation in primary productivity and soil Carbon and Nitrogen in the Luquillo Experimental Forest Puerto Rico[J].Plant and Soil,263(1):69-84.
    WANG Q,LU H L,CHEN J Y,et al.,2018.Spatial distribution of glomalin-related soil protein and its relationship with sediment carbon sequestration across a mangrove forest[J].Science of the Total Environment,613-614:548-556.
    WANG W J,ZHONG Z L,WANG Q,et al.,2017.Glomalin contributed more to carbon,nutrients in deeper soils,and differently associated with climates and soil properties in vertical profiles[J].Scientific Reports,DOI:10.1038/s41598-017-12731-7.
    WRIGHT S F,UPADHAYAY A,1996.Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from arbuscular mycorrhizal fung[J].Soil Science,161(9):575-586.
    WRIGHT S F,UPADHYAYA A,1998.Survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J].Plant and Soil,198(1):97-107.
    ZAK D R,FREEDAMN Z B,UPCHURCH R A,et al.,2017.Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition[J].Global change biology,23(2):933-944.
    ZHANG J,TANG X L,HE X H,et al.,2015.Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest:Potential consequences for soil carbon accumulation[J].Soil Biology&Biochemistry,83:142-149.
    杜介方,2010.施肥对土壤团聚体分布及其球囊酶素的影响[D].大连:大连交通大学.DU J F,2010.Effect of fertilization treatments on the distribution of soil aggregates and glomain[D].Dalian:Dalian jiaotong University.
    郭伟,耿珍珍,陈朝,2008.模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响[J].生态环境学报,27(1):10-17.GUO W,GENG Z Z,CHEN C,2018.Effects of Nitrogen Addition on Mycorrhizal Fungi Community Structure and Diversity of Pinus koraiensis and Fraxinus mandshurica in Changbai Mountain[J].Ecology and Environmental Sciences,27(1):10-17
    黄园园,OLBRECHT L,杨晓霞,等,2004.养分添加对青藏高原高寒草甸丛枝菌根真菌的影响[J].北京大学学报(自然科学版),50(5):911-918.HUANG Y Y,OLBRECHT L,YANG X X,et al.,2004.Effects of nutrient additions on the arbuscular mycorrhizal fungal colonization in the alpine meadow on the Tibetan Plateaus[J].Acta Scientiarum Naturalium Universitatis Pekinensis,50(5):911-918.
    刘晓蕾,2006.土壤中总球囊霉素测定方法的研究及初步应用[D].北京:中国农业大学.LIU X L,2006.The determination method of soil total glomalin and preliminary application[D].Beijing:China Agricultural University.
    鲁显楷,莫江明,李德军,等,2007.鼎湖山主要林下层植物光合生理特性对模拟氮沉降的响应[J].北京林业大学学报,29(6):1-9.LU X K,MO J M,LI D J,et al.,2007.Effects of simulated Ndeposition on the photosynthetic and physiologic characteristics of dominant understorey plants in Dinghushan Mountain of subtropical China[J].Journal of Beijing Forestry Universiity,29(6):1-9.
    田慧,刘晓蕾,盖京苹,2009.球囊霉素及其作用研究进展[J].土壤通报,40(5):1215-1220.TIAN H,LIU X L,GAI J P,2009.Review of Glomalin-related Soil Protein and Its Function[J].Chinese Journal of Soil Science,40(5):1215-1220.
    涂利华,2012.模拟氮沉降对华西雨屏区苦竹人工林生态系统碳循环过程和特征的影响[D].四川:四川农业大学.TU L H,2012.Effect of simulated nitrogen deposition carbon cycling processes and characteristics of pleioblastus amarus plantation ecosyatem in Rainy Area of West China[D].Sicuan:Sichuan Agricultural University.
    王芳,张军辉,谷越,等,2017.氮添加对树木光合速率影响的meta分析[J].生态学杂志,36(6):1539-1547.WANG F,ZHANG J H,GU Y et al.,2017.Meta-analysis of the effects of nitrogen addition on photosynthesis of forests[J].Chinese Journal of Ecology,36(6):1539-1547.
    王启,2014.内蒙古中温型草原真菌多样性研究及其分布影响因子研究[D].内蒙古:内蒙古农业大学.WANG Q,2014.The study on AM funfi diversity and its moderatetrmperate steppesplant community of Inner Mongolia[D].Inner Mongolia:Inner Mongolia Agricultur.
    王晓荣,潘磊,庞宏东,等,2016.模拟氮沉降对亚热带栎属树种幼苗生长、生物量累积及光合特性的影响[J].中南林业科技大学学报,36(1):78-85.WANG X R,PAN L,PANG H D,et al.,2016.Effects of simulated nitrogen deposition on growth,biomass accumulation and photosynthetic characteristics responses of Quercus seedlings in Mid-subtropics of China[J].Journal of Central South University of Forestry&Technology,36(1):78-85.
    张蕊,王艺,金国庆,2013.氮沉降模拟对不同种源木荷幼苗叶片生理及光合特性的影响[J].林业科学研究,26(2):207-213.ZHANG R,WANG Y,JIN G Q,2013.The effects of nitrogen deposition on leaf physiological and photosynthetic characters of schima superba seedlings from three provenances[J].Forest Research,26(2):207-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700