用户名: 密码: 验证码:
高温胁迫对樟树光合性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photosynthetic abilities in Cinnamomum camphora with high temperature stress
  • 作者:王彬 ; 田正凤 ; 应彬彬 ; 马元丹 ; 左照江
  • 英文作者:WANG Bin;TIAN Zhengfeng;YING Binbin;MA Yuandan;ZUO Zhaojiang;School of Forestry and Biotechnology, Zhejiang A&F University;
  • 关键词:树木生理学 ; 樟树 ; 高温 ; 光合特性 ; 叶绿素荧光诱导动力学 ; 光响应
  • 英文关键词:tree physiology;;Cinnamomum camphora;;high temperature;;photosynthetic ability;;chlorophyll fluorescence transient;;light response
  • 中文刊名:浙江农林大学学报
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:浙江农林大学林业与生物技术学院;
  • 出版日期:2019-01-24
  • 出版单位:浙江农林大学学报
  • 年:2019
  • 期:01
  • 基金:浙江省自然科学基金资助项目(LY17C160004);; 国家自然科学青年基金资助项目(31870585,31300364);; 浙江省省院合作林业科技项目(2018SY07);; 浙江农林大学科研发展基金人才启动项目(2013FR069)
  • 语种:中文;
  • 页:50-56
  • 页数:7
  • CN:33-1370/S
  • ISSN:2095-0756
  • 分类号:S792.23
摘要
光合作用是植物对环境变化最为敏感的生理过程。通过研究高温胁迫对樟树Cinnamomum camphora叶绿素荧光诱导动力学、气体交换速率和水分利用效率的影响,以期从光合作用的角度揭示高温对樟树的危害机制。结果表明:35和45℃高温胁迫后,樟树叶绿素荧光诱导动力学曲线O到P点的荧光强度均随胁迫增强而明显降低,同时诱导动力学参数单位反应中心吸收的光能总量、单位反应中心捕获的光能总量、单位反应中心内电子传递的量子产额、光合性能指数和单位吸收面积上天线色素能量吸收的驱动力均明显降低,其中在45℃时降至最低,与对照(25℃)相比分别降低了21.7%(P<0.01), 17.6%(P<0.01), 38.8%(P<0.01), 60.2%(P<0.01)和26.9%(P<0.01)。35和45℃高温胁迫后,单位反应中心热耗散的能量明显升高,与对照相比分别增加了13.5%(P<0.05)和78.4%(P<0.01);此外,樟树光合速率、气孔导度、蒸腾速率和水分利用效率亦均明显降低,其中最大光合速率分别降低了16.0%(P<0.05)和44.6%(P<0.01)。由此可见,高温胁迫可通过降低樟树的光能吸收、量子产量和电子传递,并促进吸收光能进行热耗散,降低光系统Ⅱ效率,进而减少同化力以降低光合速率。
        Photosynthesis is the most sensitive physiological process for environmental variation. To uncover any detriment of high temperature from photosynthesis on Cinnamomum camphora, the effects of high temperature stress on chlorophyll fluorescence transients, gas exchange rate, and water use efficiency in the plants treated with high temperature at 25 ℃(the control), 35 ℃ and 45 ℃, respectively, were studied, and one-way analyses of variance was performed to analyze the effects of high temperature. Results showed that fluorescence intensity from O to P point in chlorophyll fluorescence transients in C. camphora declined as temperature increased. Fluorescence transient parameters significantly decreased by 21.7%(P<0.01) in absorption flux per reaction center, 17.6%(P<0.01) in trapped energy flux per reaction center, 38.8%(P<0.01) in electron transport flux per reaction center, 60.2%(P <0.01) in performance index based on absorption, and 26.9%(P<0.01) in driving force based on absorption at 45 ℃. Compared to the control, dissipated energy flux per reaction center significantly increased by 13.5%(P<0.05) and 78.4%(P<0.01), respectively, under high temperature at 35 and 45 ℃. In addition, the photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency declined at 35 and 45 ℃. The maximum photosynthetic rate significantly reduced by16.0%(P<0.05) and 44.6%(P<0.01), respectively, at 35 and 45 ℃. Therefore, high temperature stress reduced C. camphora photosystem Ⅱ efficiency by reducing light energy absorption, quantum yield, and electron transportation as well as by increasing the absorbed light energy dissipated as heat, which resulted in an assimilatory power reduction and photosynthetic rate decline.
引文
[1] LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042):616-620.
    [2] GIRARDIN M P, HOGG E H, BERNIER P Y, et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming[J]. Global Change Biol, 2016, 22(2):627-643.
    [3] FERN魣NDEZ I C D, LUQUE E G, MERCADO F G, et al. Influence of temperature and salinity on the germination of Limonium tabernense Erben from Tabernas Desert(Almería, SE Spain)[J]. Flora, 2016, 218(1):68-74.
    [4] MATHUR S, AGRAWAL D, JAJOO A. Photosynthesis:response to high temperature stress[J]. J Photochem Photobiol B Biol, 2014, 137(8):116-126.
    [5] ZUO Zhaojiang, WANG Bin, YING Binbin, et al. Monoterpene emissions contribute to thermotolerance in Cinnamomum camphora[J]. Trees, 2017, 31(6):1759-1771.
    [6] MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat[J]. Trends Biochem Sci, 2012, 37(3):118-125.
    [7] PETROV V, HILLE J, MUELLER-ROEBER B, et al. ROS-mediated a biotic stress-induced programmed cell death in plants[J]. Front Plant Sci, 2015, 6(1):1-16.
    [8] LAWLOR D W. Preface:musings about the effects of environment on photosynthesis[J]. Ann Bot, 2009, 103(4):543-549.
    [9] KUMAR T A, CHARAN T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiol, 1998, 117(3):851-858.
    [10] ASHRAF M, HARRIS P J C. Photosynthesis under stressful environments:an overview[J]. Photosynthetica, 2013, 51(2):163-190.
    [11] ENAMI I, KITAMURA M, TOMO T, et al. Is the primary cause of thermal in activation of oxygen evolution in spinach PSⅡmembranes release of the extrinsic 33 kDa protein or of Mn?[J]. Bioch Biophys Acta Bioenerg, 1994,1186(1/2):52-58.
    [12] CRAFS-BRANDNER S J, LAW R D. Effects of heat stress on the inhibition and recovery of ribulose-1,5-bisphosphate carboxylase/oxygenase activation state[J]. Planta, 2000, 212(1):67-73.
    [13]李富福,吴幼媚,易平,等.香樟无性系扦插林和实生人工幼林生长性状比较研究[J].西部林业科学,2010, 39(4):15-19.LI Fufu, WU Youmei, YI Ping, et al. Comparative study on growth performance of Cinnamomum camphora plantations of clone cuttings and seedlings[J]. J West China For Sci, 2010, 39(4):15-19.
    [14] DU Li, LI Yongpeng, YAO Yao, et al. An efficient protocol for plantlet regeneration via direct organogenesis by using nodal segments from embryo-cultured seedlings of Cinnamomum camphora L.[J]. PLoS One, 2015, 10(5):e0127215.doi:10.1371/journal. Pone. 0127215.
    [15]张旻桓,张汉卿,刘二冬.樟树北移耐寒性与形态特征的相关性研究[J].北方园艺, 2011(13):94-97.ZHANG Minheng, ZHANG Hanqing, LIU Erdong. Camphortree and the morphological characteristics of cold north correlation[J]. North Hortic, 2011(13):94-97.
    [16]胡义,胡庭兴,胡红玲,等.干旱胁迫对香樟幼树生长及光合特性的影响[J].应用与环境生物学报,2014, 20(4):675-682.HU Yi, HU Tingxing, HU Hongling, et al. Effects of drought stress on growth and photosynthetic characteristics of Cinnamomum camphora saplings[J]. Chin J Appl Environ Biol, 2014, 20(4):675-682.
    [17]韩博,李志勇,郭浩,等.干旱胁迫下5种幼苗光合特性的研究[J].林业科学研究, 2014, 27(1):92-98.HAN Bo, LI Zhiyong, GUO Hao, et al. Studies on seedling photosynthetic characteristics of five tree species under drought stress[J]. For Res, 2014, 27(1):92-98.
    [18]梅海军,王宁,李自阳,等. NaCl和Na2SO4胁迫对香樟幼苗生理特性的影响[J].西北林学院学报, 2011, 26(6):30-34.MEI Haijun, WANG Ning, LI Ziyang, et al. Effects of NaCl and Na2SO4saline stress on ecophysiological characteristics of Cinnamomum camphora seedlings[J]. J Northwest For Univ, 2011, 26(6):30-34.
    [19]张丽华,王晓立,王梦秋,等.苏打盐碱胁迫对香樟幼苗光合特性的影响[J].北方园艺, 2012(23):91-93.ZHANG Lihua, WANG Xiaoli, WANG Mengqiu, et al. Effect on camphor seedling photosynthetic characteristic of soda saline-alkali stress[J]. North Hortic, 2012(23):91-93.
    [20]张小泉,王文,傅帅. 2013年浙江省夏季异常高温天气特征及其成因分析[J].气象与环境学报, 2017, 33(1):80-86.ZHANG Xiaoquan, WANG Wen, FU Shuai. Characteristics and causes of an extremely high-temperature event in the summer of 2013 in Zhejiang Province[J]. J Meteorol Environ, 2017, 33(1):80-86.
    [21] STRASSERF R J, SRIVASTAVA A, GOVINDJEE. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochem Photobiol, 1995, 61(1):32-42.
    [22] CHRISTEN D, SCHNMANNA S, JERMINI M, et al. Characterization and early detection of grapevine(Vitis vinifera)stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress[J].Environ Exp Bot, 2007, 60(3):504-514.
    [23] YE Z P, YU Q, KANG H J. Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions[J]. Photosynthetica, 2012, 50(3):472-476.
    [24] STRASSER R J, GOVINDJEE. On the O-J-I-P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii[G]//MURATA N. Research in Photosynthesis. Dordrecht:Kluwer Academic Publishers, 1992:29-32.
    [25] CHEN L S, CHENG L. Photosystem 2 is more tolerant to high temperature in apple(Malus domestica Borkh.)leaves than in fruit peel[J]. Photosynthetica, 2009, 47(1):112-120.
    [26]金立桥,车兴凯,张子山,等.高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系[J].植物生理学报, 2015, 51(6):969-976.JIN Liqiao, CHE Xingkai, ZHANG Zishan, et al. The Relationship between the changes in Wkand different damage degree of PSⅡdonor side and acceptor side under high temperature with high light in cucumber[J]. Plant Physiol J,2015, 51(6):969-976.
    [27] HALDIMANN P, STRASSER R J. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea(Pisum sativum L.)[J]. Photosynth Res, 1999, 62(1):67-83.
    [28] PAN Xiangliang, DENG Chunnuan, ZHANG Daoyong, et al. Toxic effects of amoxicillin on the photosystemⅡof Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests[J]. Aquat Toxicol, 2008, 89(4):207-213.
    [29] GOVINDJE E. Sixty-three years since Kautsky:chlorophyll a fluorescence[J]. Austr J Plant Physiol, 1995, 22(2):131-160.
    [30] GAO Peijun, ZUO Zhaojiang, WU Xingbo, et al. Effects of cycloheximide on photosynthetic abilities, reflectance spectra and fluorescence emission spectra in Phyllostachys edulis[J]. Trees, 2016, 30(3):719-732.
    [31]刘倩倩,马寿宾,冯希环,等.嫁接对高温和低温胁迫下辣椒幼苗快速叶绿素荧光诱导动力学特性的影响[J].园艺学报, 2016, 43(5):885-896.LIU Qianqian, MA Shoubin, FENG Xihuan, et al. Effects of grafting on the fast chlorophyll fluorescence induction dynamics of pepper seedlings under temperature stress[J]. Acta Hortic Sin, 2016, 43(5):885-896.
    [32] STRAUSS A J, KRGER G H J, STRASSER R J, et al. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P[J]. Environ Exp Bot, 2006, 56(2):147-157.
    [33] IVANOV A G, HURRY V, SANE P V, et al. Reaction center quenching of excess light energy and photoprotection of photosystemⅡ[J]. J Plant Biol, 2008, 51(2):85-96.
    [34]孙胜楠,王强,孙晨晨,等.黄瓜幼苗光合作用对高温胁迫的响应与适应[J].应用生态学报, 2017, 28(5):1603-1610.SUN Shengnan, WANG Qiang, SUN Chenchen, et al. Response and adaptation of photosynthesis of cucumber seedlings to high temperature stress[J]. Chin J Appl Ecol, 2017, 28(5):1603-1610.
    [35]郝召君,周春华,刘定,等.高温胁迫对芍药光合作用、叶绿素荧光特性及超微结构的影响[J].分子植物育种, 2017, 15(6):2359-2367.HAO Zhaojun, ZHOU Chunhua, LIU Ding, et al. Effects of high temperature stress on photosynthesis, chlorophyll fluorescence and ultrastructure of herbaceous peony(Paeonia lactiflora Pall.)[J]. Mol Plant Breed, 2017, 15(6):2359-2367.
    [36]黄纯倩,朱晓义,张亮,等.干旱和高温对油菜叶片光合作用和叶绿素荧光特性的影响[J].中国油料作物学报, 2017, 39(3):342-350.HUANG Chunqian, ZHU Xiaoyi, ZHANG Liang, et al. Effects of drought and high temperature on photosynthesis and chlorophyll fluorescence characteristics of rapeseed leaves[J]. Chin J Oil Crop Sci, 2017, 39(3):342-350.
    [37]郑宇,何天友,陈凌艳,等.高温胁迫对西洋杜鹃光合作用和叶绿素荧光动力学参数的影响[J].福建农林大学学报(自然科学版), 2012, 41(6):608-615.ZHENG Yu, HE Tianyou, CHEN Lingyan, et al. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of Rhododendron hybridum[J]. J Fujian Agriv For Univ Nat Sci Ed, 2012, 41(6):608-615.
    [38] DRAKE J E, POWER S A, DUURSMA R A, et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought:a comparison of model formulations[J]. Agric For Meteorol, 2017, 247:454-466. doi:10.1016/j. agrformet.2017.08.026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700