用户名: 密码: 验证码:
外源Pb在三种典型土壤中老化过程差异性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differences in the aging of added lead in three typical soils
  • 作者:孙硕 ; 李菊梅 ; 马义兵 ; 赵会薇
  • 英文作者:SUN Shuo;LI Ju-mei;MA Yi-bing;ZHAO Hui-wei;Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences;The Semi-arid Agriculture Engineering & Technology Research Center;
  • 关键词:外源Pb ; 红壤 ; 黑土 ; 潮土 ; 老化过程 ; 提取剂
  • 英文关键词:added lead;;red earth;;black soil;;fluvo-aquic soil;;aging;;extractant
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:中国农业科学院农业资源与农业区划研究所;国家半干旱农业工程技术研究中心;
  • 出版日期:2019-08-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2016YFD0800400);; 国家科技支撑计划项目(2015BAD05B01)~~
  • 语种:中文;
  • 页:279-288
  • 页数:10
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
为探究外源Pb在不同土壤中的老化过程,对外源添加Pb的土壤进行不同时间(1、3、9、30、100、360 d)的室内培养,并利用三种化学提取剂(0.01 mol·L~(-1)CaCl_2、0.05 mol·L~(-1)EDTA-2Na和0.43 mol·L~(-1)HNO_3)表征的有效态Pb的动态变化,研究了我国三种典型土壤(红壤、黑土和潮土)中有效态Pb的老化过程。结果表明,有效态Pb提取率受不同提取剂和土壤性质的显著影响,0.43mol·L~(-1)HNO_3(81%~99%)和0.05 mol·L~(-1)EDTA-2Na(66%~99%)对Pb的提取率远高于0.01 mol·L~(-1)CaCl_2(0.002%~13.8%),红壤中0.01 mol·L~(-1)CaCl_2提取率(7.2%~13.8%)远高于潮土和黑土(0.002%~0.037%)。三种土壤中0.05 mol·L~(-1)EDTA-2Na提取率排序为:黑土>红壤>潮土;三种土壤中0.43 mol·L~(-1)HNO_3提取率较高且随老化时间无显著变化,而0.01 mol·L~(-1)CaCl_2提取态Pb总体上均随老化时间显著降低后逐渐变缓。红壤和潮土中0.05 mol·L~(-1)EDTA提取态Pb的老化过程经过30 d的快速下降后逐渐变缓,到100~360 d后基本达到平衡,而黑土中变化相对缓慢。三种土壤适宜的老化时间分别为:100 d(红壤)、360 d(潮土)、>360 d(黑土)。外源Pb在三种土壤中的老化过程符合一阶指数衰减方程。EDTA提取态Pb老化速率与土壤pH、电导率(EC)呈极显著负相关,与铁铝氧化物含量呈显著正相关。
        To investigate the aging of added lead(Pb)in different soils, three typical soils(red earth, black soil, and fluvo-aquic soil)were dosed with soluble Pb and stored for 1, 3, 9, 30, 100, and 360 days. Three extractants(0.01 mol·L~(-1) CaCl_2, 0.05 mol·L~(-1) EDTA-2 Na, and0.43 mol·L~(-1) HNO_3)were used to extract available Pb after different incubation periods. The results indicated that the extraction efficiency of Pb added to soils was related to the type of extractant and the properties of soil. The extraction efficiencies of 0.43 mol·L~(-1) HNO_3(81%~99%)and 0.05 mol·L~(-1) EDTA-2 Na(66%~99%)for Pb added to soils were much higher than that of 0.01 mol·L~(-1) CaCl_2(0.002%~13.8%),which was much higher in red earth(7.2%~13.8%)than in the other two soils(black soil and fluvo-aquic soil, 0.002%~0.037%). With0.05 mol·L~(-1) EDTA-2 Na, the extraction efficiency followed the order of black soil>red earth>fluvo-aquic soil. The dynamic aging curves of Pb extracted using 0.01 mol·L~(-1) CaCl_2 and 0.05 mol·L~(-1) EDTA-2 Na showed that aging occurred in the short-term in the three soils, then the aging rate decreased with time; however, there was no significant change in the extraction efficiency of 0.43 mol·L~(-1) HNO_3 over time.The concentrations of 0.05 mol·L~(-1) EDTA-2 Na extractable Pb in red earth and fluvo-aquic soil initially decreased rapidly for 30 days, then changed slowly between 100 and 360 days to reach a pseudo-equilibrium. In black soil, the aging process was relatively slower; the times to reach a pseudo-equilibrium for red earth, fluvo-aquic soil, and black soil were 100 days, 360 days, and longer than 360 days, respectively. The aging curve of Pb in soil fitted well to a first order exponential decay equation. The aging rates of EDTA-extractable lead showed a highly significant negative correlation with soil pH and electrical conductivity, and a significant positive correlation with the content of iron-aluminum oxide in the soil.
引文
[1]张辉,马东升.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学, 1998, 17(6):564-568.ZHANG Hui, MA Dong-sheng. Heavy metal pollution in road side and its adsorption-desorption characteristics[J]. Environmental Chemistry,1998, 17(6):564-568.
    [2]辛术贞,李花粉,苏德纯.我国灌溉污水中重金属含量特征及年代变化规律[J].农业环境科学学报, 2011, 30(11):2271-2278.XIN Shu-zhen, LI Hua-fen, SU De-chun. Concentration characteristics and historical changes of heavy metals in irrigation sewage in China[J]. Journal of Agro-Environment Science, 2011, 30(11):2271-2278.
    [3]黄锦孙.土壤铜镍植物毒害的室内和田间实验差异研究[D].北京:中国农业科学院, 2012.HUANG Jin-sun. Difference between laboratory and field tests for phytotoxicity of copper and nickel in soils[D]. Beijing:Chinese Academy of Agriculture Sciences, 2012.
    [4] Tuin, B J W, Tels M. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning[J]. Environmental Technology, 1990, 11:935-948.
    [5] Yarlagadda P S, Matsumoto M R, VanBenschoten, J E, et al. Characteristics of heavy metals in contaminatd soils[J]. Journal of Environmental Engineering, 1995, 121(4):276-286.
    [6]张厦,宋静,高慧,等.贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究[J].土壤, 2017, 49(2):328-336.ZHANG Sha, SONG Jing, GAO Hui, et al. Assessment and modeling of Cd and Pb availability in contaminated arable soils in mining area of Guizhou[J]. Soils, 2017, 49(2):328-336.
    [7] Alexander M. Aging, bioavailability, and overestimation of risk form environmental pollutants[J]. Environmental Science and Technology,2000, 34(20):4259-4265.
    [8] Ma Y B, Lombi E, Nolan A L, et al. Short-time natural attenuation of copper in soils:Effects of time, temperature, and soil charactristics[J].Environmental Toxicology and Chemistry, 2006, 25(3):652-658.
    [9] Ma Y B, Lombi E, Oliver I W, et al. Long-term aging of copper added to soils[J]. Environmental Science&Technology, 2006, 40(20):6310-6317.
    [10]杨金燕,杨肖娥,何振立,等.土壤中铅的吸附-解吸行为研究进展[J].生态环境, 2015, 14(1):102-107.YANG Jin-yan, YANG Xiao-e, HE Zhen-li, et al. Advanced in the studies of Pb absorption and desorption in soils[J]. Ecology and Environment, 2015, 14(1):102-107.
    [11]胡宁静,黄朋,骆永明,等. XAFS研究不同pH下土壤对于Pb的吸附[J].光谱学与光谱分析, 2010, 30(12):3425-3429.HU Ning-jing, HUANG Peng, LUO Yong-ming, et al. X-Ray adsorption fine structure(XAFS)study of the effects of pH on Pb sorption by soil[J]. Spectroscopy and Spectral Analysis, 2010, 30(12):3425-3429.
    [12]何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社, 1998:276-303.HE Zhen-li. Soil-chemical balances of pollution and beneficial elements[M]. Beijing:China Environmental Science Press, 1998:276-303.
    [13] Veeresh H, Tri Pathy S, Chaudhuri D, et al. Sorption and distribution of adsorbed metals in three soils of India[J]. Applied Geochemistry,2003, 18:1723-1731.
    [14] Chip A, Lena M. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils[J]. Journal of Environmental Quality, 2002, 31(4):581-589.
    [15] Basta N T, Tabatabai M A. Path-analysis of heavy metal adsorption by soil[J]. Agronomy Journal, 1993, 85(5):1054-1057.
    [16]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金, 2003, 24(1):47-49.WANG Dan-li, GUAN Zi-chuan, WANG En-de. Adsorption of heavy metal ions onto humus[J]. Gold, 2003, 24(1):47-49.
    [17]贺建群,许嘉琳,杨居荣,等.土壤中有效态Cd、Cu、Zn、Pb提取剂的选择[J].农业环境保护, 1994, 13(6):246-251.HE Jian-qun, XU Jia-lin, YANG Ju-rong, et al. Study of the extractents for available Cd, Cu, Zn and Pb in soils[J]. Agro-environmental Protection, 1994, 13(6):246-251.
    [18] R?mken P F, Guo H Y, Chu T S, et al. Characterization of soil heavy metal pools in paddy fields in Taiwan:Chemical extraction and soildsolution partitioning[J]. Soils Sediments, 2009(9):216-228.
    [19]刘光崧,蒋能慧,张连第,等.土壤理化分析与剖面描述[M].北京:中国标准出版社, 1996:5-43.LIU Guang-song, JIANG Neng-hui, ZHANG Lian-di, et al. Soil physical and chemical analysis and description of soil profiles[M]. Beijing:Standard Press of China, 1996:5-43.
    [20]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社, 1978:278-283.Institute of Soil Science, Chinese Academy of Sciences. Analysis of soil physico-chemical properties[M]. Shanghai:Shanghai Scientific&Technical Publishers, 1978:278-283.
    [21]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:60-69.LU Ru-kun. Soil argrochemistry analysis protocoes[M]. Beijing:China Agriculture Science Press, 1999:60-69.
    [22]中华人民共和国环境保护部.固体废物金属元素的测定电感耦合等离子体质谱法, HJ 766—2015[S].北京:中国环境科学出版社,2015.Ministry of Environmental Protection of the People′s Republic of China. Soild waste-determination of metals-inductively coupled plasma mass spectrometry(ICP-MS), HJ 766—2015[S]. Beijing:China Environmental Science Press, 2015.
    [23]蔡琼瑶,徐俏,周振,等.外源铅在四种土壤中的老化特征及对土壤化学性质的影响[J].环境科学学报, 2019, 39(3):899-907.CAI Qiong-yao, XU Qiao, ZHOU Zhen, et al. Aging process of Pb affects the chemical properties of four types of soil[J]. Acta Scientiae Circumstantiae, 2019, 39(3):899-907.
    [24] Houba V J G, Temminghoff E J M, Gaikhorst G A, et al. Soil analysis proccedures using 0.01M calcium chloride as extraction reagent[J].Communications in Soil Science and Plant Analysis, 2000, 31(9/10):1299-1396.
    [25] International Organization for Standardization. Soil quality-Extraction of trace elements using dilute nitric acid 17586—2016[S]. International Organization for Standardization(ISO), 2016.
    [26]蒋宝.土壤铜镍长期老化行为及有效态生态阈值[D].北京,中国农业大学, 2017.JIANG Bao. Long-term aging behavior of soil added nickel and copper and ecological thresholds based on extractable copper in soils[D].Beijing:China Agricultural University, 2017.
    [27]闫峰,刘合满,梁东丽,等.不同土壤对Cr吸附的动力学特征[J].农业工程学报, 2008, 24(6):21-25.YAN Feng, LIU He-man, LIANG Dong-li, et al. Kinetic characteristics of hexavalent chromium apparent adsorption on different soils[J].Transactions of the Chinese Society of Agricultural Engineering, 2008,24(6):21-25.
    [28]周建民,党志,陈能场,等.螯合剂诱导下污染土壤溶液中TOC和重金属动态变化及其相关性[J].环境化学, 2007, 26(5):602-605.ZHOU Jian-min, DANG Zhi, CHEN Neng-chang, et al. TOC and heavy metals dynamic in contaminated soil solution and their correlations with the addition of chelating agents[J]. Environmental Chemistry, 2007, 26(5):602-605.
    [29] Chopin E I B, Alloway B J. Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW Spain[J]. Water,Air and Soil Pollution, 2007, 182:245-261.
    [30]韩彦山,卢新卫,武星.无机酸对金尾矿中多种重金属的去除效果研究[J].山东农业科学, 2015(10):54-59.HAN Yan-shan, LU Xin-wei, WU Xing. Removal effect of inorganic acid on multiple heavy metals from gold tailings[J]. Shandong Agricultural Sciences, 2015(10):54-59.
    [31] Mortimer R J G, Rae J E. Metal speciation(Cu, Zn, Pb, Cd)and organic matter in oxic to suboxic salt marsh sediments, Severn Estuary,Southwest Britian[J]. Marine Pollutionl Buletin, 2000(40):377-386.
    [32] Dong Y, Ma L Q, Rhue R D. Relation of enhanced Pb solubility to Fe partioning in soils[J]. Environmental Pollution, 2000, 110(3):515-522.
    [33]王波,刘德军,姚军,等.泥炭土中腐植酸的提纯和表征研究[J].辐射防护, 2009, 29(3):172-179.WANG Bo, LIU De-jun, YAO Jun, et al. Isolation and characterization of humic acids from peat soil[J]. Radiation Protection, 2009, 29(3):172-179.
    [34]李军,张玉龙,陈维新.有机质对土壤铅吸附特性的影响[J].沈阳农业大学学报, 1992, Z09:38-42.LI Jun, ZHANG Yu-long, CHEN Wei-xin. The effect of organic matter on the lead-adsorption property of soil[J]. Journal of Shenyang Agricultural University, 1992, Z09:38-42.
    [35]张淼,李亚青,王敏新.黄土体对重金属(Cd、Pb、Zn、Cu)吸附试验研究[J].西北水资源与水工程, 1996, 7(2):35-40.ZHANG Miao, LI Ya-qing, WANG Min-xin. Adsorption behavior of heavy metals(Cd, Pb, Zn, Cu)in yellow soils[J]. Water Resources&Water Engineering, 1996, 7(2):35-40.
    [36] Sipos R, Nemeth T, Kis V K, et al. Sorption of copper, zinc and lead on soil mineral phases[J]. Chemosphere, 2008, 73(4):461-469.
    [37] Ming H, He W X, Lamb D T, et al. Bioavalability of lead in contaminated soil depends on the nature of bioreceptor[J]. Ecotoxicology and Environmental Safety, 2012, 78:344-350.
    [38]赵玉萍.土壤化学[M].北京:北京农业大学出版社, 1991:206-215.ZHAO Yu-ping. Soil chemistry[M]. Beijing:Beijing Agricultural University Press, 1991:206-215.
    [39] Landrot G, Khaokaew S. Lead speciation and association with organic matter in various particle-size fractions of contaminated soils[J]. Environmental Science&Technology, 2018. 52(12):6780-6788.
    [40] Payá-pérez A, Sala J, Mousty F. Comparison of ICP-AES and ICPMS for the analysis of trace elements in soil extracts[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4):223-230.
    [41]陈飞霞,魏世强.土壤中有效态重金属的化学试剂提取研究进展[J].干旱环境监测, 2006, 20(3):153-157.CHEN Fei-xia, WEI Shi-qiang. Study of chemical extraction of heavy metal in soil[J]. Arid Environmental Monitoring, 2006, 20(3):153-157.
    [42]白庆中,宋燕光.有机物对重金属在黏土中吸附行为的影响[J].环境科学, 2000, 21(5):64-67.BAI Qing-zhong, SONG Yan-guang. Effect of organic acids on heavy metal migration in clay[J]. Environmental Science, 2000, 21(5):64-67.
    [43]梁爽.老化过程对土壤砷、铅的形态及可利用性的影响研究[D].南京:南京大学, 2014.LIANG Shuang. Effect of aging on arsenic and lead fractionation and availability in soils[D]. Nanjing:Nanjing University, 2014.
    [44]贺婧.不同碳酸钙含量石灰性土壤随外源污染物的吸附解吸[D].沈阳:沈阳农业大学, 2012.HE Jing. The adsorption and desorption of several calcareous soils with different content calcium carbonate on exogenous pollutants[D].Shenyang:Shenyang Agriculture University, 2012.
    [45]朱礼学.土壤pH值及CaCO3在多目标地球化学调查中的研究意义[J].四川地质学报, 2001, 21(4):226-228.ZHU Li-xue. Significance of pH value and CaCO3 of soil to multipurpose geochemical survey[J]. Acta Geologica Sichuan, 2001, 21(4):226-228.
    [46] Ma Y B, Uren N C. Effect of aging on the availability of zinc added to a calcareous clay soil[J]. Nutr Cycl Agroecosyst, 2006, 76:11-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700