用户名: 密码: 验证码:
绝热加速量热仪在锂/钠离子电池研究中应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A review of the safety of secondary battery with adiabatic accelerated calorimeter
  • 作者:喻妍 ; 车海英 ; 杨轲 ; 马紫峰
  • 英文作者:YU Yan;CHE Haiying;YANG Ke;MA Zifeng;Shanghai Electrochemical Energy Devices Research Centre, Department of Chemical Engineering, Shanghai Jiao Tong University;
  • 关键词:绝热加速量热仪 ; 电池 ; 安全性 ; 电化学 ; 电解质
  • 英文关键词:adiabatic accelerated calorimeter;;battery;;safety;;electrochemistry;;electrolytes
  • 中文刊名:化工进展
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:上海交通大学化学工程系上海电化学能源器件工程技术研究中心;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:04
  • 基金:国家重点基础研究发展计划(2014CB239703);; 国家自然科学基金(21676165);; 国家重点研发计划(2016YFB0901500)
  • 语种:中文;
  • 页:8-21
  • 页数:14
  • CN:11-1954/TQ
  • ISSN:1000-6613
  • 分类号:TM912
摘要
电池热失控主要由于外部高温环境等因素,使得电池内部发生一系列的化学反应,导致电池内部的温度上升。电极材料、电解液以及它们之间的匹配程度都将影响电池的安全性能。绝热加速量热仪(ARC)由于其能研究绝热环境下的自加热情况且灵敏度高等优点成为电池安全性研究的方式之一。通过ARC测试,可以得到自放热速率和温度的变化关系,推动锂/钠离子电池动力学研究、热失控原因分析以及电极材料、电解液热安全性能评估的研究。本文回顾了近二十年来绝热加速量热仪在锂/钠离子电池安全性方面的研究,比较了不同的电极材料、电解液以及电池的热行为,筛选出安全性更高的电池材料与电解液体系,为今后的锂/钠离子电池的设计和研究提供有效的理论数据与参考。
        Because of the external high temperature environment, a series of chemical reactions inside the battery lead to the rapid rise of temperature and pressure inside the battery. Electrode materials and electrolytes affect the safety of the battery. Adiabatic accelerated calorimeter(ARC) is one of the methods to study battery safety through its self-heating in adiabatic environment sensitively. The relationship between the self-exothermic rate and temperature can be obtained by ARC, which can promote the study on dynamics of lithium/sodium ion battery, the analysis of the causes of thermal runaway and evaluation of thermal safety performance of electrode material and electrolyte. This paper reviewed the research of ARC in lithium/sodium ion battery safety during the recent twenty years. It compared the thermal behavior of different electrode materials, electrolytes and batteries, and then selected safer materials and electrolytic system, which provided the effective theoretical data and reference for the future design and research of the lithium/sodium ion battery.
引文
[1] HOLZAPFEL M, ALLOIN F, YAZAMI R. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures[J]. Electrochemical Acta, 2004, 49(4):581-589.
    [2] MACNEIL D D, LU Z H, CHEN Z H, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Liion battery cathodes[J]. Journal of Power Sources, 2002, 108(1):8-14.
    [3] WU Q L, HA S, PRAKASH J, et al. Investigations on high energy lithium-ion batteries with aqueous binder[J]. Electrochemical Acta,2013, 114:1-6.
    [4] ZHANG S, STEWART S A, HATCHARD T D, et al. Thermal runaway prediction for impregnated activated carbons from isothermal DSC measurements[J]. Carbon, 2003, 41(5):903-913.
    [5] GEDER J, SONG J H, KANG S H, et al. Thermal stability of lithiumrich manganese-based cathode[J]. Solid State Ionics, 2014, 268:242-246.
    [6] HOUSSET M, BAILLET F, DESSARD-DIANA B, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9):3224-3229.
    [7] RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources, 1999, 79(2):135-142.
    [8] WANG Q S, ZHAO X J, YE J N, et al. Thermal response of lithiumion battery during charging and discharging under adiabatic conditions[J]. Journal of Thermal Analysis&Calorimetry, 2016, 124(1):417-428.
    [9]王浩,李建军,王莉,等.绝热加速量热仪在锂离子电池安全性研究方面的应用[J].新材料产业, 2013(1):53-58.WANG H, LI J J, WANG L, et al. Accelerating rate calorimeter and its application in lithium-ion battery safety[J]. Advanced Materials Industry, 2013(1):53-58.
    [10] DOUGHTY D, ROTH E P. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012, 21(2):37-44.
    [11]刘伶,张乃庆,孙克宁,等.锂离子电池安全性能影响因素分析[J].稀有金属材料与工程, 2010, 39(5):936-940.LIU L, ZHANG N Q, SUN K N, et al. Analysis of factors affecting the safety performance of lithium-ion batteries[J]. Rare Metal Materials and Engineering, 2010, 39(5):936-940.
    [12] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012,43(24):210-224.
    [13]陈俊燕, MARTYN, OTTAWAY,等.加速量热仪对锂离子蓄电池安全性能的评估[J].电源技术, 2007, 31(1):19-22.CHEN J Y, MARTYN, OTTAWAY, et al. Evaluation on safety performance of lithium ion battery by accelerating rate calorimeter[J].Journal of Power Sources, 2007, 31(1):19-22.
    [14]李慧芳,黄家剑,李飞,等.锂离子电池在充放电过程中的产热研究[J].电源技术, 2015, 39(7):1390-1393.LI H F, HUANG J J, LI F, et al. Study on heat production of lithium ion batteries during charge discharge process[J]. Journal of Power Sources, 2015, 39(7):1390-1393.
    [15] MACNEIL D D, DAHN J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:Ⅰ. Li0.5CoO2[J]. Journal of the Electrochemical Society, 2001, 148(11). DOI:10.1149/1.1407245.
    [16] MACNEIL D D, DAHN J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:Ⅱ. LiMn2O4charged to 4.2V[J].Journal of the Electrochemical Society, 2001, 148(11). DOI:10.1149/1.1407246.
    [17] R?DER, BABA, FRIEDRICH, et al. Impact of delithiated Li0FePO4on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236:151-157.
    [18] JIANG J W, DAHN J R. ARC studies of the thermal stability of three different cathode materials:LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2, and LiFePO4inLiPF6and LiBOB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(1):39-43.
    [19] KIM G Y, DAHN J R. ARC studies of the effects of electrolyte additives on the reactivity of delithiated Li1-x[Ni1/3Mn1/3Co1/3]O2and Li1-x[Ni0.8Co0.15Al0.05]O2positive electrode materials with electrolyte[J].Journal of the Electrochemical Society, 2014, 161(9):A1394-A1398.
    [20] DAHN J, JOUANNEAU S, MURPHY G, et al. Morphology and safety of Li[Nix Co1-2xMnx]O2[J]. Journal of the Electrochemical Society, 2003,150(10):A1299-A1304.
    [21] MA L, NIE M Y, XIA J, et al. A systematic study on the reactivity of different grades of charged Li[Nix Mny Coz]O2, with electrolyte at elevated temperatures using accelerating rate calorimetry[J]. Journal of Power Sources, 2016, 327:145-150.
    [22] MACNEIL D D, HATCHAID T D, DAHN J R. A comparison between the high temperature electrode/electrolyte reactions of Lix CoO2and Lix Mn2O4[J]. J. Electrochem Soc., 2001,148(7):A663-A667.
    [23] WANG Y D, JIANG J W, DAHN J R. The reactivity of delithiated Li[Ni1/3Mn1/3Co1/3]O2,[Ni1/3Mn1/3Co1/3]O2, or LiCoO2with non-aqueous electrolyte[J]. Electrochemistry Communications, 2007, 9(10):2534-2540.
    [24] ZHOU F, ZHAO X M, DAHN J R. Synthesis, electrochemical properties, and thermal stability of Al-Doped LiNi1/3Mn1/3Co(1/3-z)Alz O2positive electrode materials[J]. Journal of the Electrochemical Society,2009, 156(4):A343-A347.
    [25] JIANG J W, CHEN J, DAHN J R. Comparison of the reactions between Li7/3Ti5/3O4or LiC6and nonaqueous solvents or electrolytes using accelerating rate calorimetry[J]. Journal of the Electrochemical Society,2004, 151(12):A2082-A2087.
    [26] ZHOU F, ZHAO X M, FERGUSON?P P, et al. Comparison of thermal stability between Lithiated Sn30Co30C40LiSi, or Li0.81C6and 1 M LiPF6EC:DEC electrolyte at high temperature[J]. Journal of the Electrochemical Society, 2008, 155(12):A921-A925.
    [27] JIANG J W, DAHN J R. Dependence of the heat of reaction of Li0.81C6(0.1V), Li7Ti5O12(1.55V), and Li0.5VO2(2.45V)reacting with nonaqueous solvents or electrolytes on the average potential of the electrode material[J]. Journal of the Electrochemical Society, 2006, 153(2):A310-A315.
    [28] RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I.Experimental[J]. Fuel&Energy Abstracts, 1999, 41(6):2068-2077.
    [29] CHE H Y, CHEN S L, XIE Y Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J].Energy&Environmental Science, 2017, 10(5):1075-1101.
    [30] GNANARAJ J S, ZINIGRAD E, ASRAF L, et al. The use of accelerating rate calorimetry(ARC)for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119(6):794-798.
    [31] JIANG J W, DAHN J R. Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6EC/DEC[J].Electrochemical and Solid-State Letters, 2003, 6(9):A180.
    [32] JIANG J W, DAHN J R. Effects of solvents and salts on the thermal stability of LiC6[J]. Electrochimica Acta, 2004, 49(26):4599-4604.
    [33] JIANG J W, DAHN J R. ARC studies of the reaction between Li0FePO4,and LiPF6, or LiBOB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(7):724-728.
    [34] MA L, XIA J, XIA X, et al. The Impact of vinylene carbonate,fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2014, 161(10):A1495-A1498.
    [35] JIANG L H, WANG Q S, SUN J H. Electrochemical performance and thermal stability analysis of LiNix Coy Mnz O2cathode based on a composite safety electrolyte.[J]. Journal of Hazardous Materials, 2018,351:260-269.
    [36] EDDAHECH A, BRIAT O, VINASSA J M. Thermal characterization of a high-power lithium-ion battery:potentiometric and calorimetric measurement of entropy changes[J]. Energy, 2013, 61(6):432-439.
    [37] JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2, and Li(Ni1/3Mn1/3Co1/3)O2, batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100(4):127-131.
    [38] FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255(6):294-301.
    [39] WU T Q, CHEN H D, WANG Q S, et al. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes[J].Journal of Hazardous Materials, 2017, 344:733-741.
    [40] LIN C J, XU S C, LIU J L. Measurement of heat generation in a 40 A·h LiFePO4, prismatic battery using accelerating rate calorimetry[J].International Journal of Hydrogen Energy, 2018, 43(17):8375-8384.
    [41] LEI B X, ZHAO W J, ZIEBERT C, et al. Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter[J]. Batteries, 2016, 3(2):14.
    [42] CHEN Z H, QIN Y, REN Y, et al. Multi-scale study of thermal stability of lithiated graphite[J]. Energy&Environmental Science,2011, 4(10):4023-4030.
    [43] JIANG J W, FORTIER H, REIMERS J N, et al. Thermal stability of18650 size Li-ion cells containing LiBOB electrolyte Salt[J]. Journal of the Electrochemical Society, 2004, 151(4):A609.
    [44] YE J N, CHEN H D, WANG Q S, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182:464-474.
    [45] XIA X, OBROVAC M N, DAHN J R. Comparison of the reactivity of Nax C6and Lix C6with non-aqueous solvents and electrolytes[J].Electrochemical and Solid-State Letters, 2011, 14(9):A130.
    [46] XIA X, DAHN J R. NaCrO2is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes[J].Electrochemical and Solid-State Letters, 2012, 15(1):A1.
    [47] XIA X, DAHN J R. A study of the reactivity of de-intercalated P2-NaxCoO2with non-aqueous solvent and electrolyte by accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2012, 159(5):A647-A650.
    [48] XIA X, DAHN J R. A study of the reactivity of de-intercalated NaNi0.5Mn0.5O2with non-aqueous solvent and electrolyte by accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2012, 159(7):A1048-A1051.
    [49] XIA X, DAHN J R. Study of the reactivity of Na/hard carbon with different solvent and electrolyte[J]. Journal of the Electrochemical Society, 2012, 159(5):A515-A519.
    [50] XIA X, LAMANNA W M, DAHN J R. The reactivity of charged electrode materials with sodium bis(trifluoromethanesulfonyl)imide(NaTFSI)based-electrolyte at elevated temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4):A607-A609.
    [51] XIE Y Y, XU G L, CHE H Y, et al. Probing thermal and chemical stability of Nax Ni1/3Fe1/3Mn1/3O2cathode material towards safe sodiumion batteries[J]. Chem. Mater., 2018, 30(15):4909-4918.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700