用户名: 密码: 验证码:
水体pH对伪鱼腥藻生长及叶绿素荧光参数的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of pH on growth and chlorophyll fluorescence parameters of Pseudanabaena sp.
  • 作者:王茂伟 ; 周利 ; 高静思 ; 朱佳
  • 英文作者:WANG Maowei;ZHOU Li;GAO Jingsi;ZHU Jia;School of Environmental and Municipal Engineering, Qingdao University of Technology;Harbin Institute of Technology Shenzhen Graduate School;Department of Building and Environmental Engineering Shenzhen Polytechnic;
  • 关键词:伪鱼腥藻 ; pH ; 叶绿素荧光参数 ; 水华
  • 英文关键词:Pseudanabaena sp.;;pH;;chlorophyll fluorescence parameter;;water bloom
  • 中文刊名:生态科学
  • 英文刊名:Ecological Science
  • 机构:青岛理工大学环境与市政工程学院;哈尔滨工业大学深圳研究生院;深圳职业技术学院建筑与环境工程学院;
  • 出版日期:2019-05-15
  • 出版单位:生态科学
  • 年:2019
  • 期:03
  • 基金:国家水利部公益性行业科研专项基金项目(201301047)
  • 语种:中文;
  • 页:162-168
  • 页数:7
  • CN:44-1215/Q
  • ISSN:1008-8873
  • 分类号:X52;X503.23
摘要
在实验室条件下,以伪鱼腥藻(Pseudanabaena sp.)为研究对象,研究了pH对伪鱼腥藻生长、叶绿素荧光参数(F_v/F_m、ETR、I_k)的影响,以期了解伪鱼腥藻对水体pH的适应及调节能力。试验分为2组,一组每天测定水体实际pH后调整藻液pH为初始设定值,另一组在试验开始时调节pH至设定值后不人为调节,每天测定pH。结果表明:伪鱼腥藻偏好碱性环境,并对水体pH有很强的调节和适应能力。每天调控pH为11的试验组生长情况最好;不人为调控pH试验中, pH 5—11试验组pH最终趋于10.9—11.5,人为调控pH试验中, pH 7—11试验组pH最终趋于9.5—11.3。pH为3和13条件下,伪鱼腥藻均不能生长。pH 5—11范围内, F_v/F_m、ETR随pH增大而增大, pH 7—11范围内各组I_k值差异不大。
        In order to understand the adaptation and adjustment ability of Pseudanabaena sp. to pH, the effects of different pH on the growth, chlorophyll fluorescence parameters(F_v/F_m, ETR, I_k) of Pseudanabaena sp. were investigated. The experiment was divided into 2 groups. One group adjusted the pH to initially determined value after measuring the actual pH of the water. Another group of experiments adjusted pH to set value and not adjusting artificially, and pH was measured daily. The results showed that the Pseudanabaena sp. preferred the alkaline environment and had a strong adjustment and adaptation to the water pH. The test group that regulated pH to 11 per day had a best growth condition. In the unartificially control pH test, the pH 5-11 test group's pH tended to 10.9-11.5. In the artificially control pH test, the pH 7-11 test group's pH tended to 9.5-11.3. Pseudanabaena sp. could not grow when pH was 3 and 13. F_v/F_m, ETR increased with pH increasing in the range of pH 5-11, and there was no significant difference in Ik within the range of pH 7 to 11.
引文
[1]张红,黄勇.基于NOAA/AVHRR卫星资料的巢湖水华规律分析中国环境科学[J].湖泊科学,2009,29(7):727-732.
    [2]高光,高锡芸,秦伯强,等.太湖水体中碱性磷酸酶的作用阈值[J].湖泊科学,2000,12(4):353-358.
    [3]刘丽萍.滇池水华特征及成因分析[J].环境科学研究,1999,12(5):36-37.
    [4]赵静静,张方可,高静思,等.梯级水库输水线路伪鱼腥藻属时空分布特征及影响因子分析[J].水资源保护,2016,32(3):111-116.
    [5]KAKIMOTO M,ISHIKAWA T,MIYAGI A.Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyano bacterium Pseudanabaena galeat[J].Journal of Plant Physiology,2014,171(3/4):292-300.
    [6]JANG M H,HA K,LUCAS M C.Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish[J].Aquatic Toxicology,2004,68(1):51-59.
    [7]OUDRA B,LOUDIKI M,VASCONCELOS V.Detection and quantification of microcystins from cyanobacteria1strains isolated from reservoirs and ponds in Morocco[J].Environmental Toxicology,2002,17(1):32-39.
    [8]OH H M,LEE S J,JANG M H.Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat[J].Applied and Environmental Microbiology,2000,66(6):176-179.
    [9]袁丽娜,宋炜,肖琳,等.多环境因素全面正交作用对铜绿微囊藻生长的效应研究[J].南京大学学报(自然科学版),44(4):408-414.
    [10]罗伟,沈健英.2种蓝藻的生长对不同环境pH的响应[J].上海交通大学学报:农业科学版,25(6):566-569.
    [11]HUANG J J,KOLODNY N H,REDFEARH J T,et al.The acidstress response of the cyanobacterium Synechocystis sp.strain PCC 6308[J].Microbiology,2002,(177):486-493.
    [12]张青田,王新华,林超.铜绿微囊藻培养过程中溶解氧和p H变化的监测分析[J].天津水产,2010,3:18-21.
    [13]OLIVCR R L,GANF G G.Freshwater Bloom[M]//POTTSM.The Ecology of Cyanobacteria.Netherlands:Kluwer Academic Publishers,2000:149-194.
    [14]王英英.不同氮磷质量浓度对太浦河四种优势藻类生长影响的研究[D].上海:上海师范大学,2016.
    [15]蒋文凯,张国庆,邓湘云,等.初始p H和碳酸氢钠对威氏海链藻生长的影响[J].海洋渔业,2014,36(1):51-55.
    [16]许海,刘兆普,袁兰,等.p H对几种淡水藻类生长的影响[J].环境科学与术,2009,32(1):27-30.
    [17]支彦丽,储昭升,钟远,等.铜绿微囊藻和四尾栅藻光合利用碳酸氢盐探讨[J].湖泊科学,2008,20(4):443-449.
    [18]TALLING J F.The depletion of carbon dioxide from lake water by phytoplankton[J].Journal of Ecology,1976,64(1):79-121.
    [19]AZOV Y.Effect of p H on inorganic carbon uptake in algal cultures[J].Applied Environmental Microbiology,1982,43(6):1300-1306.
    [20]LUCAS W J.Photosynthetic assimilation of exogenous HCO3-by aquatic plants[J].Annual Review of Plant Physiology,1983,34(1):71-104.
    [21]MILLER A G,COLMAN B.Evidence for HCO3-transport by the blue-green alga(Cyano-bacterium)Coccochloris peniocystis[J].Plant Physiology,1980,65(2):397-402.
    [22]苏发文,高鹏程,来琦芳.铜绿微囊藻和小球藻对水环境p H的影响[J].中国水产科学,2016,23(6):1380-1388.
    [23]张青田,王新华,林超,等.水体p H和铜绿微囊藻增殖的关系研究[J].水生态学杂志,2011,32(2):52-55.
    [24]TARALDSVIK M,MYKLESTAD S.The effect of p H on growth rate,biochemical composition and extracellular carbohydrate production of the marine diatom[J].European Journal of Phycology,2010,35(2):189-194.
    [25]王越.环境因子对米氏凯伦藻的生长及光合生理的影响[D].上海:华东师范大学,2015.
    [26]曹广霞.盐碱胁迫条件对栅藻中抗氧化酶活性和代谢产物积累的影响[D].广州:中山大学,2012.
    [27]MORANT-MANCEAU A,PRADIER E,TREMBLIN G.Osmotic adjustment,gas exchanges and chlorophyll fluoresce-nce of a bexaploid triticale and its parental species under salt stress[J].Journal of Plant Physiology,2004,161(1):25-33.
    [28]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):l-8.
    [29]陶宗娅,邹琦.植物光合作用光抑制分子机理及其光保护机制[J].西南农业学报,1999,12:9-16.
    [30]刘晓娟,段舜山,李爱芬.绿色巴夫藻在UV-B胁迫后的生长补偿效应[J].生态学报,2006,26(6):1763-1771.
    [31]秦红杰,李敦海.铜绿微囊藻高温胁迫后的超补偿生长[J].环境科学,2010,31(7):1504-1509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700