用户名: 密码: 验证码:
煤矿采空区煤层气钻井施工堵漏液研制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study and develop on leak plugging fluid for CBM drilling in goaf of coal mine
  • 作者:李彦明 ; 郭小阳 ; 李称心 ;
  • 英文作者:LI Yanming;GUO Xiaoyang;LI Chenxin;LIU Lu;Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University;School of Oil & Natural Gas Engineering,Southwest Petroleum University;Chongqing Research Institute,China Coal Technology and Engineering Group Corportion Ltd.;
  • 关键词:煤层气 ; 采空区 ; 堵漏 ; 矿渣 ; 固化体
  • 英文关键词:coalbed methane;;gob;;leaking stoppage;;slag;;solidified body
  • 中文刊名:煤炭科学技术
  • 英文刊名:Coal Science and Technology
  • 机构:油气藏地质及开发工程国家重点实验室(西南石油大学);西南石油大学石油与天然气工程学院;中煤科工集团重庆研究院有限公司;
  • 出版日期:2019-09-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:09
  • 基金:国家科技重大专项资助项目(2016ZX05045001-007)
  • 语种:中文;
  • 页:157-162
  • 页数:6
  • CN:11-2402/TD
  • ISSN:0253-2336
  • 分类号:TE28
摘要
为解决在煤矿采空区施工煤层气井时出现的钻井液恶性漏失、掉块卡钻、下套管遇阻等问题,以采空区覆岩特征为研究基础,通过对比激活剂、悬浮剂及降失水剂的不同添加量对堵漏液性能的影响,确定了各添加剂的最优添加量,形成了一种具有固化功能的无机胶凝材料钻井堵漏液,其配方为:100%水+5%激活剂+0.5%悬浮剂+3%降失水剂+54%矿渣。该堵漏液在30℃条件下流动度为21cm,稠化时间在61 min以内,1 d抗压强度大于6 MPa,其性能指标满足煤矿区煤层气浅井堵漏要求。为进一步分析该堵漏液的作用机理,采用扫描电镜、X-射线及热重分析等现代测试分析方法对形成的固化体进行测试,结果表明:堵漏液中的胶凝材料与水接触后发生水化反应生成C—S—H凝胶,随着时间的增加,C—S—H凝胶越来越多,最终水化产物的结构越来越致密形成了较高的抗压强度。宏观表征即:具有良好流动性的堵漏液通过泵送进入地层裂缝,浆液填充裂缝直至裂缝被充满,随着水化反应的进行堵漏液逐步失去流动性,最终原裂隙发育地层形成一个胶结具有承压能力的整体,实现了堵漏。
        The leakage of drilling fluid,block stuck,and casing resistance is a severe problem when constructing coalbed methane wells in coal mine gobs.Based on the characteristics of overburden of gob,the ideal adding amount of each additive is determined by comparing the effects of different amount of activator,suspension concentrate,and fluid loss additive on the performance of plugging fluid. An inorganic cementsolidifying drilling plugging solution is developed,the formula of which is 100% water,5% activator( JHQ),0.5% suspending agent( CMC),3% fluid loss agent( G33 S),and 54% slag. This drilling plugging fluid has fluidity of 21 cm at 30 ℃,thickening time within 61 min,and 1 d compressive strength of over 6 MPa. The performance parameters meet the requirements for plugging fluid used in shallow well in coal mines. To further analyze the mechanism of the plugging solution,the formed solidified body was tested using modern testing methods such as SEM,XRD,and thermal analysis. The results show that when contacting with water,hydration reaction occurred on the cementation material of plugging solution,producing C-S-H gelation which increases with time. The structure of the final hydration product becomes denser gradually,resulting in higher compressive strength. The whole process that the plugging fluid realizes plugging can be described as three steps-the plugging fluid with good fluidity is first pumped into the formation crack,filling the crack until full,then the plugging fluid gradually loses fluidity as the hydration reaction proceeds,and finally forms a cementation in the original fissure to realize plugging.
引文
[1]尹志胜,桑树勋,周效志.煤炭资源枯竭矿井煤层气运移及富集规律研究[J].特种油气藏,2014,21(5):48-51.YIN Zhisheng,SANG Shuxun,ZHOU Xiaozhi. Study on migration and enrichment regularities of CBM in exhausted coal[J]. Special Oil&Gas Reservoirs,2014,21(5):48-51.
    [2]李日富.煤矿采动稳定区煤层气资源量“间接扣减”评估方法及其应用[J].煤矿安全,2018,49(4):160-164.LI Rifu.“Indirect Deduction”assessmentmethod and application for CBM resources in coal mining stability area.[J]. Safety in Coal Mines,2018,49(4):160-164.
    [3]袁亮,姜耀东,王凯,等.我国关/废弃矿井资源精准开发利用的科学思考[J].煤炭学报,2018,43(1):14-20.YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J].Journal of China Coal Society,2018,43(1):14-20.
    [4]叶汝陵,苏文叔.煤矿煤层气排放对大气的污染及对策[J].矿业安全与环保,1999,26(1):1-5.YE Ruling,SU Wenshu. Pollution of atomsphere by coalbed gas emitted from coal mines and the countermeasures[J].Mining Safety and Environmental Protection,1999,26(1):1-5.
    [5]李国君,刘长久.铁法矿区地面垂直采空区井技术[J].中国煤层气,2005,2(4):7-10.LI Guojun,LIU Changjiu. Surface vertical goafwell technology in Tiefamining area[J]. China Coalbed Methane,2005,2(4):7-10.
    [6]李俊峰.晋城矿区过采空区钻井抽采煤层气可行性分析[J].能源技术与管理,2014,39(3):4-6.LI Junfeng. Feasibility analysis of drilling and extracting coalbed methane from mined-out areas in Jincheng mining area[J].Energy Technology and Management,2014,39(3):4-6.
    [7]王永东,徐岗,宋鹏军.子长油田煤炭采空区定向井钻井技术[J].石油钻采工艺,2012,34(5):15-18.WANG Yongdong,XU Gang,SONG Pengjun. Directional well drilling technology in coal goaf of Zichang Oilfield[J]. Petroleum Drilling and Production Technology,2012,34(5):15-18.
    [8]王森.注氮过采空区钻井技术研究[J].煤,2018,27(6):66-68.WANG Sen. Study on drilling technology of nitrogen injection over goaf[J]. Coal,2018,27(6):66-68.
    [9]吴奇兵.可固化堵漏工作液体系研究与应用[D].成都:西南石油大学,2012.
    [10]焦少卿,赵朝霞,周回生,等.一种新型超低密度堵漏液的室内研究[J].钻井液与完井液,2009,26(6):31-36.JIAO Shaoqing,ZHAO Zhaoxia,ZHOU Huisheng,et al. Inhouse study of a new type of ultra-low density plugging fluid[J].Drilling Fluids&Completion Fluids,2009,26(6):31-36.
    [11]孔卫开,徐可一,舒智.新型可固化工作液的室内研究[J].探矿工程,2012,39(7):9-13.KONG Weikai,XUKeyi,SHU Zhi. Indoor research on a new curable working fluid[J]. Exploration Engineering,2012,39(7):9-13.
    [12]张林海,郭小阳,李早元,等.一种提高注水泥质量的可固化工作液体系研究[J].西南石油大学学报,2007,29(11):85-88.ZHANG Linhai,GUO Xiaoyang,LI Zaoyuan,et al. A study of the solidified working liquid system for improving the quality of cement injection[J]. Journal of Southwest Petroleum University,2007,29(11):85-88.
    [13]李早元,周靖东,邓智中,等.一种可固化防漏工作液水化机理研究[J].钻井液与完井液,2017,34(2):93-98.LI Zaoyuan,ZHOU Jingdong,DENG Zhizhong,et al. Study on hydration mechanism of a curable leak proof working fluid[J].Drilling Fluid and Completion Fluid,2017,34(2):93-98.
    [14]赵启阳,邓慧,王伟,等.一种可固化堵漏工作液的室内研究[J].钻井液与完井液,2013,30(1):41-44.ZHAO Qiyang, DENG Hui, WANG Wei,et al. An indoor research on solidified plugging fluid[J]. Drilling Fluid and Completion Fluid,2013,30(1):41-44.
    [15]徐同台,刘玉杰,申威,等.钻井工程防漏堵漏技术[M].北京:石油工业出版社,1997.
    [16]刘.以矿渣为胶凝材料的低密度固井液体系及其性能改善研究[D].成都:西南石油大学,2017.
    [17]邓智中.矿渣可固化堵漏液的碱激发硬化特性研究及应用[D].成都:西南石油大学,2017.
    [18]卢前明,王震,张瑞林,等.化学外加剂对粉煤灰-矿渣-水泥胶凝体系的激发作用[J].硅酸盐通报,2018,37(8):2516-2521.LU Qianming,WANG Zhen,ZHANG Ruilin,et al. Excitation function of chemical admixture on fly ash-slag-cement cementitious system[J]. Bulletin of the chinese ceramic society,2018,37(8):2516-2521.
    [19]艾贵成,田群山,吴天师.抗盐降失水剂G33S在酒东深井固井中的应用[J].西部探矿工程,2013(2):78-79.AI Guicheng,TIAN Qunshan,WU Tianshi.Application of salt-resistant water loss agent G33S in cementing well of Jiudong well[J].West-china Exploration Engineering,2013(2):78-79.
    [20] GB/T 19139—2012,油井水泥试验方法[S].
    [21] GB/T 7897—2008,钢丝网水泥用砂浆力学性能实验方法[S].
    [22]孔祥文,王丹,隋智通.矿渣胶凝材料的活化机理及高效激发剂[J].中国资源综合利用,2004(6):22-26.KONG Xiangwen,WANG Dan,SUI Zhitong.The activated mechanism and the best activator of slag activated cement[J]. China Resources Comprehensive Utilization,2004(6):22-26.
    [23]孙家瑛,诸培南,吴初航.矿渣在碱性溶液激发下的水化机理探讨[J].硅酸盐通报,1988,7(6):20-29.SUN Jiaying,ZHU Peinan,WU Chuhang. Study on hydration mechanism of slag excited by alkaline solution[J].Bulletin of the Chinese Ceramic Society,1988,7(6):20-29.
    [24]廖佳庆.碱矿渣水泥与混凝土化学收缩和干缩行为研究[D].重庆:重庆大学,2007.
    [25]佘俊辉,詹镇峰,李兆恒,等.水灰比对无机聚合物胶凝材料浆体流变性能的影响[J].混凝土,2017(8):37-41.SHE Junhui,ZHAN Zhenfeng,LI Zhaoheng,et al.Effects of water to cementratio on the rheological property of geopolym erpasters[J].Concrete,2017(8):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700