用户名: 密码: 验证码:
自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The dynamics of self-propelled Janus microspheres near obstacles with different geometries
  • 作者:张红 ; 宗奕吾 ; 杨明成 ; 赵坤
  • 英文作者:Zhang Hong;Zong Yi-Wu;Yang Ming-Cheng;Zhao Kun;Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University;Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics,Institute of Physics, Chinese Academy of Sciences;School of Physical Sciences, University of Chinese Academy of Sciences;
  • 关键词:自驱动 ; Janus微球 ; 受限 ; 障碍物
  • 英文关键词:self-propelled;;Janus microsphere;;confinement;;obstacles
  • 中文刊名:物理学报
  • 英文刊名:Acta Physica Sinica
  • 机构:天津大学化工学院系统生物工程教育部重点实验室;中国科学院物理研究所软物质物理重点实验室;中国科学院大学物理学院;
  • 出版日期:2019-07-08
  • 出版单位:物理学报
  • 年:2019
  • 期:13
  • 基金:国家自然科学基金(批准号:11704276,21573159,11674365,11874397)资助的课题~~
  • 语种:中文;
  • 页:239-245
  • 页数:7
  • CN:11-1958/O4
  • ISSN:1000-3290
  • 分类号:O572.2
摘要
自驱动粒子在靠近边界尤其是平面上障碍物的边界时,会展现出奇特的运动行为.本文通过实验研究了固定于平面上的微米级障碍物的几何效应(包括大小和形状)对双氧水驱动的Janus微球运动行为的影响.实验结果表明,当障碍物尺寸超过临界值后,自驱动的Janus微球会被其"捕获"并沿着其边界定向运动.自驱动粒子在障碍物边界的停留时间及运动速率随着双氧水浓度的增加而增大,且其在圆柱形障碍物边界和球形障碍物边界的停留时间及运动速率均随着障碍物直径的增加而增大.但在相同的双氧水浓度和障碍物直径条件下,自驱动粒子在圆柱边界上的停留时间比其在球形障碍物边界上长;在圆柱边界上的运动速率比在球形障碍物边界上小,揭示了自驱动粒子在障碍物边界上的运动行为与障碍物的几何特性密切相关.本研究有助于进一步理解自驱动粒子在不同大小及形状的障碍物中的运动特征,掌握并利用这些特征在诸如设计特殊几何形状来引导自驱动粒子的运动等领域有很好的应用价值.
        Self-propelled particles exhibit interesting behavior when approaching boundaries or obstacles, which has been drawn a lot of attention due to its potential applications in areas of cargo delivery, sensing and environmental remediation. However, our understanding on the mechanism of how they interact with boundaries or obstacles is still limited. Here, using video particle-tracking microscopy, we experimentally studied the dynamics of self-propelled Janus microsphere driven by H_2O_2 near obstacles. The Janus particles used are sulfuric polystyrene(PS) microspheres(hydrodynamic diameter is 3.2 μm) with only half surface being sputter-coated with a five-micron-thick platinum layer. Two different types of obstacles are used. One is cylindrical post and the other is PS microsphere. To understand the size effect of obstacles, cylindrical posts with three different diameters(3 μm, 10 μm and 20 μm), and PS microspheres with four different diameters(1.0μm, 1.8 μm, 2.4 μm and 7.2 μm) are tested, respectively. The results show that when obstacles are larger than a critical size, the self-propelled Janus microspheres will be captured and orbit around them. The retention time and the orbiting speed of the Janus particles increase with the concentration of H_2 O_2, as well as with the diameter of obstacles no matter whether cylindrical posts or PS microspheres are used as obstacles. However, we found that under the same concentration of H_2 O_2, compared with the case of PS microspheres as obstacles,when Janus particles orbit around cylindrical posts, the retention time is larger and the average speed is smaller. These results indicate that the self-propelled behavior of Janus particles near obstacles is closely dependent on the geometrical properties of obstacles. Our results of Janus spheres are different from earlier work on Au-Pt Janus rods [Takagi D, Palacci J, Braunschweig A B, Shelley M J, Zhang J 2014 Soft Matter 101784]. By comparing the speed of Janus particles before and after they are captured by spherical obstacles, for our case, the speed of Janus spheres is reduced, while for the case of Au-Pt rods, the speed of Au-Pt rods doesn't change much. Such discrepancies may originate from different driven mechanisms in these two systems(electropheoresis mechanism for Au-Pt micro-rods and diffusiophoresis mechanism for PS-Pt Janus microspheres), which are then resulted in different flow fields and different distributions of catalytic solutions.But to test this hypothesis, further work is needed. Our study provides us a better understanding on the dynamic behavior of self-propelled particles near obstacles, which will be helpful for applications in, for example,designing micro-structures to guide the motion of self-propelled particles.
引文
[1]Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R,Golestanian R 2007 Phys. Rev. Lett. 99 048102
    [2]Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H 2004 J.Am. Chem. Soc. 126 13424
    [3]Fournier-Bidoz S, Arsenault A C, Manners I, Ozin G A 2005Chem. Commun. 4 441
    [4]Jiang H R, Yoshinaga N, Sano M 2010 Phys. Rev. Lett. 105268302
    [5]Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M2013 Science 339 936
    [6]Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95
    [7]Ebbens S, Gregory D A, Dunderdale G, Howse J R, Ibrahim Y, Liverpool T B, Golestanian R 2014 Epl-Europhys. Lett.106 58003
    [8]Martinez-Pedrero F, Massana-Cid H, Tierno P 2017 Small 131603449
    [9]Kagan D, Laocharoensuk R, Zimmerman M, Clawson C,Balasubramanian S, Kong D, Bishop D, Sattayasamitsathit S,Zhang L F, Wang J 2010 Small 6 2741
    [10]Soler L, Magdanz V, Fomin V M, Sanchez S, Schmidt O G2013 ACS Nano 7 9611
    [11]Zhang Z J, Zhao A D, Wang F M, Ren J S, Qu X G 2016Chem. Commun. 52 5550
    [12]Zhou D K, Li Y C G, Xu P T, Ren L Q, Zhang G Y, Mallouk T E, Li L Q 2017 Nanoscale 9 11434
    [13]Lozano C, ten Hagen B, Lowen H, Bechinger C 2016 Nat.Commun. 7 12828
    [14]Dey K K, Bhandari S, Bandyopadhyay D, Basu S,Chattopadhyay A 2013 Small 9 1916
    [15]Takagi D, Palacci J, Braunschweig A B, Shelley M J, Zhang J 2014 Soft Matter 10 1784
    [16]Das S, Garg A, Campbell A I, Howse J, Sen A, Velegol D,Golestanian R, Ebbens S J 2015 Nat. Commun. 6 8999
    [17]Simmchen J, Katuri J, Uspal W E, Popescu M N,Tasinkevych M, Sanchez S 2016 Nat. Commun. 7 10598
    [18]Wykes M S D, Zhong X, Tong J, Adachi T, Liu Y P,Ristroph L, Ward M D, Shelley M J, Zhang J 2017 Soft Matter 13 4681
    [19]Katuri J, Caballero D, Voituriez R, Samitier J, Sanchez S2018 ACS Nano 12 7282
    [20]Zong Y W, Liu J, Liu R, Guo H L, Yang M C, Li Z Y, Chen K 2015 ACS Nano 9 10844
    [21]Yu H L, Kopach A, Misko V R, Vasylenko A A, Makarov D,Marchesoni F, Nori F, Baraban L, Cuniberti G 2016 Small 125882
    [22]Spagnolie S E, Moreno-Flores G R, Bartolo D, Lauga E 2015Soft Matter 11 3396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700