用户名: 密码: 验证码:
辽河口滨海湿地CH_4排放特征及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and impact factors of methane emission in coastal wetland of the Liaohe estuary
  • 作者:袁晓敏 ; 杨继松 ; 刘凯 ; 郑冬梅 ; 郑佳玉 ; 刘强
  • 英文作者:YUAN Xiaomin;YANG Jisong;LIU Kai;ZHENG Dongmei;ZHENG Jiayu;LIU Qiang;Institute of Advanced Study in Coastal Ecology,School of Resources and Environment Engineering,Ludong University;State Key Laboratory of Water Environment Simulation,School of Environment,Beijing Normal University;Key Laboratory of Regional Environment and Eco-Remediation (Ministry of Education ) ,School of Environment,Shenyang University;Key Laboratory of Regional Environment and Eco-Remediation(Ministry of Education ) ,School of Environment,Shenyang University;
  • 关键词:CH_4排放 ; 潮汐 ; 环境因子 ; 滨海湿地 ; 辽河口
  • 英文关键词:methane emission;;tide;;environmental factor;;coastal wetland;;Liaohe estuary
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:鲁东大学资源与环境工程学院滨海生态高等研究院;北京师范大学环境学院水环境模拟国家重点实验室;沈阳大学环境学院区域污染环境生态修复教育部重点实验室;
  • 出版日期:2018-12-21 16:40
  • 出版单位:生态学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金面上项目(41571092,41871087);; “十三五”国家重点研发计划重点专项项目课题(2017YFC0505902)
  • 语种:中文;
  • 页:349-357
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X171
摘要
采用静态箱-气相色谱法,于2016年6—11月连续观测辽河口芦苇湿地、翅碱蓬湿地和裸滩湿地的CH_4排放速率,同时测定温度、氧化还原电位(Eh)、pH值和电导率(EC)等相关环境因子的动态变化。结果表明,3种类型湿地的CH_4排放具有明显的季节变化特征,均呈先上升后下降趋势。芦苇湿地、翅碱蓬湿地(涨潮前)和裸滩湿地(涨潮前)CH_4排放通量变化范围分别为0.447—10.40、0.045—0.509 mg m~(-2) h~(-1)和0.016—0.593 mg m~(-2) h~(-1),观测期内排放通量均值相应为(3.699±3.679)、(0.165±0.156) mg m~(-2) h~(-1)和(0.198±0.191) mg m~(-2) h~(-1),不同类型湿地之间差异显著(P<0.01),芦苇湿地>裸滩湿地(涨潮前)>翅碱蓬湿地(涨潮前)。涨潮过程中,翅碱蓬湿地和裸滩湿地的排放速率分别变化在0.009—0.353 mg m~(-2) h~(-1)和0.018—0.335 mg m~(-2) h~(-1),观测期间其排放速率均值分别为(0.119±0.132) mg m~(-2) h~(-1)和(0.131±0.103) mg m~(-2) h~(-1),明显低于涨潮前(P<0.01)。不同湿地类型间CH_4排放通量与电导率(EC)呈显著负相关(P<0.01)。研究结果表明,潮汐和电导率均为影响辽河口不同类型湿地中CH_4排放的关键因子。
        A monthly investigation of methane flux in Phragmites australis wetland, Saline seepweed wetland, and mudflat at Liaohe Estuary was carried out from June to November in 2016, using an enclosed chamber technique. Simultaneously, environmental factors, including soil temperature, redox potential(Eh), electrical conductivity(EC), and pH values were measured to evaluate its influence on methane emission. The results showed that:(i) the methane flux in the three types of wetland showed obvious seasonal variations, which is higher in summer than that in spring and autumn;(ii) the methane flux was 0.447—10.40 mg m~(-2) h~(-1 )with a mean of 3.699 ± 3.679 in P. australis wetland. During ebb tides, methane flux was 0.045-0.509 and 0.016-0.593 mg m~(-2) h~(-1) with a mean of 0.165 ± 0.156 and 0.198 ± 0.191 mg m~(-2) h~(-1) in the Saline seepweed wetland and mudflat, respectively. The methane flux was significantly different among the three wetland types(P < 0.01), which is highest in P. australis, and followed by mudflat, Saline seepweed wetland;(iii) during flood tide, the methane flux ranged from 0.009 to 0.353 mg m~(-2) h~(-1) and 0.018 to 0.335 mg m~(-2) h~(-1) with means of 0.119 ± 0.132 and 0.131 ± 0.103 mg m~(-2) h~(-1) in Saline seepweed wetland and mudflat, respectively. The mean fluxes of methane during flood tides were significantly lower than that of ebb tide(P < 0.01); and(iv) furthermore, methane fluxes negatively correlated with the EC values in the three wetland types(P < 0.01). The results indicate that tide and salinity are the key factors to influence methane emission from the coastal wetlands of Liaohe estuary.
引文
[1] 葛全胜, 王芳, 王绍武, 程邦波. 对全球变暖认识的七个问题的确定与不确定性. 中国人口·资源与环境, 2014, 24(1): 1- 6.
    [2] Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J M, Raynaud D, Stocker T F, Chappellaz J. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 2008, 453(7193): 383- 386.
    [3] Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell J G, Dlugokencky E J, Bergamaschi P, Bergmann D, Blake D R, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson E, Houweling S, Josse B, Fraser P J, Krummel P B, Lamarque J F, Langenfelds R L, Quéré C L, Naik V, O′Doherty S, Palmer P I, Pison I, Plummer D, Poulter B, Prinn R G, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell D T, Simpson I J, Spahni R, Steele L P, Strode S A, Sudo K, Szopa S, Van der Werf G R, Voulgarakis A, Weele M, Weiss R F, Williams J E, Zen G. Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6(10): 813- 823.
    [4] IPCC. Changes in Atmospheric Constituents and in Radioactive Forcing//Solomon S, Qin D, Manning M, Chen Z, Margiquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, New York: Cambridge University Press, 2007.
    [5] Hogan K B, Hoffman J S, Thompson A M. Methane on the greenhouse agenda. Nature, 1991, 354(6350): 181- 182.
    [6] Ortiz-Llorente M J, Alvarez-Cobelas M. Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmospheric Environment, 2012, 59: 328- 337.
    [7] 宋长春, 杨文燕, 徐小峰, 娄彦景, 张金波. 沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素. 环境科学, 2004, 25(4): 1- 6.
    [8] Elberling B, Askaer L, J?rgensen C J, Joensen H P, Kühl M, Glud R N, Lauritsen F R. Linking soil O2, CO2, and CH4 concentrations in a wetland soil: implications for CO2 and CH4 fluxes. Environmental Science & Technology, 2011, 45(8): 3393- 3399.
    [9] Rashad M, Dultz S, Guggenberger G. Dissolved organic matter release and retention in an alkaline soil from the Nile River Delta in relation to surface charge and electrolyte type. Geoderma, 2010, 158(3/4): 385- 391.
    [10] Weston N B, Vile M A, Neubauer S C, Velinsky D J. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry, 2011, 102(1/3): 135- 151.
    [11] Chowdhury N, Marschner P, Burns R G. Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Soil Biology and Biochemistry, 2011, 43(6): 1229- 1236.
    [12] Morrissey E M, Gillespie J L, Morina J C, Franklin R B. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biology, 2014, 20(4): 1351- 1362.
    [13] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 75- 78.
    [14] 王纯, 张璟钰, 黄佳芳, 杜威宁, 仝川. 盐度对感潮区淡水沼泽土壤甲烷产生潜力的影响. 湿地科学, 2015, 13(5): 593- 601.
    [15] 吴家梅, 纪雄辉, 霍莲杰, 彭华, 刘勇. 稻田土壤氧化态有机碳组分变化及其与甲烷排放的关联性. 生态学报, 2013, 33(15): 4599- 4607.
    [16] 仝川, 曾从盛, 王维奇, 闫宗平, 杨红玉. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29(1): 207- 216.
    [17] 李杨杰. 植被在长江口湿地温室气体排放过程中的影响机制研究[D]. 上海: 华东师范大学, 2015.
    [18] 马安娜, 陆健健. 芦苇在微咸水河口湿地甲烷排放中的作用. 生态学报, 2011, 31(8): 2245- 2252.
    [19] 吕国红, 周莉, 贾庆宇, 王笑影, 戴萍. 辽河三角洲主要植被类型土壤水盐含量研究. 气象与环境学报, 2010, 26(6): 65- 70.
    [20] 姜欢欢, 孙志高, 王玲玲, 牟晓杰, 孙万龙, 宋红丽, 孙文广. 秋季黄河口滨岸潮滩湿地系统CH4通量特征及影响因素研究. 环境科学, 2012, 33(2): 565- 573.
    [21] Hirota M, Senga Y, Seike Y, Nohara S, Kunii H. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 2007, 68(3): 597- 603.
    [22] Hirota M, Tang Y H, Hu Q W, Hirata S, Kato T, Mo W H, Cao G M, Mariko S. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology and Biochemistry, 2004, 36(5): 737- 748.
    [23] 廖稷. 闽江河口芦苇湿地甲烷和二氧化碳排放通量分析[D]. 福州: 福建师范大学, 2010.
    [24] Van der Nat F J, Middelburg J J. Methane emission from tidal freshwater marshes. Biogeochemistry, 2000, 49(2): 103- 121.
    [25] Yang J S, Liu J S, Hu X J, Li X X, Wang Y, Li H Y. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biology and Biochemistry, 2013, 61: 52- 60.
    [26] Delaune R D, Smith C J, Patrick W H. Methane release from Gulf coast wetlands. Tellus B: Chemical and Physical Meteorology, 1983, 35(1): 8- 15.
    [27] Bartlett K B, Bartlett D S, Harriss R C, Sebacher D I. Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 1987, 4(3): 183- 202.
    [28] 万斯昂, 徐辉, 仝川. 闽江河口潮汐沼泽甲烷排放通量和土壤甲烷产生潜力的月动态. 湿地科学, 2015, 13(4): 417- 423.
    [29] 张璟钰, 章吟遥, 仝川, 李琼, 王纯. 盐水入侵及有机碳输入对河口淡水沼泽CH4、N2O通量影响的短时效应. 亚热带资源与环境学报, 2016, 11(2): 39- 47.
    [30] Purdy K J, Nedwell D B, Embley T M. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Applied and Environmental Microbiology, 2003, 69(6): 3181- 3191.
    [31] 曾从盛, 王维奇, 仝川. 不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响. 地理研究, 2008, 27(6): 1321- 1330.
    [32] Chambers L G, Reddy K R, Osborne T Z. Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Science Society of America Journal, 2011, 75(5): 2000- 2007.
    [33] Ikenaga M, Guevara R, Dean A L, Pisani C, Boyer J N. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient. Microbial Ecology, 2009, 59(2): 284- 295.
    [34] 佘晨兴. 闽江河口潮汐沼泽湿地土壤产甲烷菌和硫酸盐还原菌群落结构和丰度的研究[D]. 福州: 福建师范大学, 2014.
    [35] 曾志华. 闽江河口区盐度梯度下潮汐沼泽湿地产甲烷菌群落结构及对环境因子的响应[D]. 福州: 福建师范大学, 2014.
    [36] 牟晓杰, 刘兴土, 仝川, 孙志高. 闽江河口短叶茳芏湿地CH4和N2O排放对氮输入的短期响应. 环境科学, 2012, 33(7): 2482- 2489.
    [37] Kankaala P, Ojala A, K?ki T. Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 2004, 68(3): 297- 311.
    [38] 王晓龙. 若尔盖高寒泥炭湿地甲烷排放特征研究[D]. 杨凌: 西北农林科技大学, 2015.
    [39] 王维奇, 曾从盛, 仝川. 湿地甲烷产生的测定方法及主要控制因子研究综述. 亚热带资源与环境学报, 2007, 2(2): 48- 56.
    [40] Rooney-Varga J N, Giewat M W, Duddleston K N, Chanton J P, Hines M E. Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiology Ecology, 2007, 60(2): 240- 251.
    [41] 韩广轩. 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展. 生态学报, 2017, 37(24): 1- 9.
    [42] 黄佳芳, 倪进治, 仝川, 华杰媛, 郑邵彦. 闽江口半咸水沼泽湿地土壤甲烷产生过程及硫酸盐还原对其抑制作用研究. 环境科学学报, 2015, 35(3): 862- 872.
    [43] Peters V, Conrad R. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biology and Biochemistry, 1996, 28(3): 371- 382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700