用户名: 密码: 验证码:
磷掺杂葵花盘基活性炭在锂离子电池负极材料中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of phosphorus-doped sunflower disk-based activated carbon in anode materials of lithium ion batteries
  • 作者:邢献军 ; 刘建华 ; 王文泉 ; 陈泽宇 ; 付一轩
  • 英文作者:Xianjun XING;Jianhua LIU;Wenquan WANG;Zeyu CHEN;Yixuan FU;School of Chemistry and Chemical Engineering, Hefei University of Technology;Institute of Advanced Energy Technology & Equipment, Hefei University of Technology;School of Automobile and Transportation Engineering, Hefei University of Technology;National City Energy Measurement Center(Anhui);
  • 关键词:磷掺杂 ; 锂离子电池 ; 负极材料 ; 活性炭 ; 葵花盘
  • 英文关键词:P-doped;;Li-ion batteries;;negative electrode material;;activated carbon;;sunflower disk
  • 中文刊名:过程工程学报
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:合肥工业大学化学与化工学院;合肥工业大学先进能源技术与装备研究院;合肥工业大学汽车与交通工程学院;国家城市能源计量中心(安徽);
  • 出版日期:2018-08-27 14:16
  • 出版单位:过程工程学报
  • 年:2019
  • 期:02
  • 基金:北京市教育委员会市属高校创新能力提升计划项目(编号:J2014QTXM0204);; 安徽省重点研究与开发计划项目(编号:1704a07020087);; 安徽省科技计划项目(编号:2013AKKG0398)
  • 语种:中文;
  • 页:219-224
  • 页数:6
  • CN:11-4541/TQ
  • ISSN:1009-606X
  • 分类号:TM912
摘要
通过简单水热和活化方法制备磷掺杂葵花盘基活性炭,采用SEM,TEM,BET,Raman,XRD等方法对材料进行表征,将其用作锂离子电池负极材料。结果表明,活性炭材料用作锂离子电池负极材料时比容量高,库伦效率好,循环性能稳定。在500 mA/g的电流密度下,首圈充电容量达1 052 mAh/g,库伦效率为48.9%。经200次循环后,容量仍保持在1 000 mAh/g以上。
        Lithium ion batteries(LIBs) have progressively attracted researchers in recent years because of their environmental friendliness and adequate resources. In order to take full advantages of the active carbon in nature, the cheapest and most efficient negative electrode material for lithium ion battery is in great need. Because sunflower was fully-infected compositae, the sunflower disk had a more stable nanostructure than other biochars. Moreover, the sunflower dish is not only rich in nitrogen and oxygen element, but also widely distributed in the world. In this work,P-doped activation carbon composites were prepared to achieve excellent electrochemical performance in rechargeable LIBs. Phosphorus-injected biomass activated carbon was prepared with simple hydrothermal and calcine methods. The characteristics of activated carbon were then tested with field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), X-ray diffractometer(XRD), Raman spectrometer, Brunauer Emmett Teller(BET), etc. When these products were applied in lithium ion battery anode materials, the electrodes achieved high energy density and Coulombic efficiency, and cycling stability simultaneously. When the battery cycling at the current density of 500 mA/g, the elementary charge capacity reached to 1 052 mAh/g, with the Coulombic efficiency of 48.9%. After 200 cycles, the capacity still maintained 1 000 mA h/g or more. However, activated carbon capacity of the contrast sample without phosphoric acid activation can only be maintained at 300 mA h/g, which was similar to ordinary carbon materials. Hence, the preparation method of the P-doped biomass resulting in activated carbon was simpleness, and the raw material was low cost and environmentally friendly. Most importantly, the electrode potential of the material was low, and the discharge platform remained stable, which was of great research value in the lithium ion battery in a commercial application.
引文
[1]闫金定.锂离子电池发展现状及其前景分析[J].航空学报,2014,35(10):2767-2775.Yan J D.Current status and development analysis of lithum-ion batteries[J].Acta Ameronautica et Astronautica Sinica,2014,35(10):2767-2775.
    [2]Cheng X B,Zhang R,Zhao C Z.Toward safe lithium metal anode in rechargeable batteries:a review[J].Chemical Reviews,2017,117(15):10403-10473.
    [3]Zhang L,Zhang G,Wu H B.Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage[J].Advanced Materials,2013,25(18):2589-2593.
    [4]Xu R,Wang G,Zhou T.Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage[J].Nano Energy,2017,39:253-261.
    [5]Xia L,Wang S,Liu G.Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life[J].Small,2016,12(7):853-859.
    [6]李义,李纯,于开锋.玉米秸秆基多孔生物质碳的制备、表征及电化学性能[J].高等学校化学学报,2018,39(4):607-613.Li Y,Li C,Yu K F.Preparation,characterization and electrochemical properties of mesoporous biomass carbon derived from corn stalk[J].Chemical Journal of Chinese Universities,2018,39(4):607-613.
    [7]潘根兴,林振衡,李恋卿.试论我国农业和农村有机废弃物生物质碳产业化[J].中国农业科技导报,2011,13(1):75-82.Pan G X,Lin Z H,Li L Q.Perspectiveon biomass carbon industrialization of organic wastefrom agricultureand rural areasin China[J].Journal of Agricultural Science and Technology,2011,13(1):75-82.
    [8]薛传金.浅谈秸秆焚烧对空气质量的影响[J].干旱环境监测,2015,29(1):23-27.Xue C J.Discuss of straw burning effects on the air quality[J].Arid Environmental Monitoring,2015,29(1):23-27.
    [9]戎泽,李子坤,杨书展,等.锂离子电池用碳负极材料综述[J].广东化工,2018,45(2):117-119.Rong Z,Li Z K,Yang S Z,et al.Review of carbon anode materials for lithium ion batteries[J].Guangdong Chemical Industry,2018,45(2):117-119.
    [10]杨振荣,郑祥俊,王章俊.溶剂热法制备磷掺杂碳纳米管作为氧气还原和氧气析出反应双功能电催化剂的研究[J].中国科学:化学,2014,44(8):1340-1346.Yang Z R,Zheng X J,Wang Z J.A solvothermal synthesis of phosphorus doped carbon nanotube as a bi-functional electrocatalyst for oxygen reduction and oxygen evolution reaction[J].Scientia Sinica Chimica,2014,44(8):1340-1346.
    [11]李同起,胡子君,许正辉.单向C/C复合材料中碳纤维和热解碳微结构的XRD法分析[J].宇航材料工艺,2009,39(5):74-77.Li T Q,Hu Z J,Xu Z H.Analyses of microstructures of carbon fibersand pyrocarbonin unidirectional composites by XRDmethod[J].Aerospace Materials&Technology,2009,39(5):74-77.
    [12]徐逸婷,陈龙,陈卓.石墨碳纳米材料光学性质在生化传感领域的应用[J].物理化学学报,2017,33(1):28-39.Xu Y T,Chen L,Chen Z.Applications of graphitic nanomaterial?s optical properties in biochemical sensing[J].Acta Physico-Chimica Sinica,2017,33(1):28-39.
    [13]Qie L,Chen W M,Wang Z H.Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J].Advanced Materials,2012,24(15):2047-2050.
    [14]Chen Y Y,Zhang Y,Jiang W J.Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J].ACS Nano,2016,10(9):8851-8860.
    [15]郭梦清,黄佳琦,孔祥屹.多孔掺磷碳纳米管:磷酸水热制备及其在氧还原和锂硫电池中的应用[J].新型炭材料,2016,31(3):352-362.Guo M Q,Huang J Q,Kong X Y.Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J].New Carbon Materials,2016,31(3):352-362.
    [16]邱治文,孙晓刚,蔡满园.碳纳米管多微孔集流体对氧化锡锂离子电池性能的影响[J].材料导报,2017,31(增刊2):30-34.Qiu Z W,Sun X G,Cai M Y.Effect of carbon nanotubes multi-microporous collector on performance of SnO2 lithium ion batteries[J].Materials Review,2017,31(S2):30-34.
    [17]闻雷,刘成名,宋仁升.石墨烯材料的储锂行为及其潜在应用[J].化学学报,2014,72(3):333-344.Wen L,Liu C M,Song R S.Lithium storage behavior of graphene materials and its potential application[J].Journal of Chemistry,2014,72(3):333-344.
    [18]张彩萍,姜久春,张维戈.梯次利用锂离子电池电化学阻抗模型及特性参数分析[J].电力系统自动化,2013,37(1):54-58.Zhang C P,Jiang J C,Zhang W G.Characterization of electrochemical impedance equivalent model and parameters for Li-ion batteries echelon use[J].Automation of Electric Power Systems,2013,37(1):54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700