用户名: 密码: 验证码:
Fe基金属氧化物/氢氧化物在超级电容器负极材料中的应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in the application of Fe-based metal oxide/hydroxide as kathode materials in supercapacitor
  • 作者:张惠 ; 刘梦洁 ; 李士阔
  • 英文作者:ZHANG Hui;LIU Mengjie;LI Shikuo;School of Physics and Material Science, Anhui University;
  • 关键词:超级电容器 ; 负极 ; 铁基金属氧化物/氢氧化物 ; 纳米结构
  • 英文关键词:supercapacitor;;kathode;;Fe-based metal oxides/hydroxides;;nanostructure
  • 中文刊名:安徽大学学报(自然科学版)
  • 英文刊名:Journal of Anhui University(Natural Science Edition)
  • 机构:安徽大学物理与材料科学学院;
  • 出版日期:2019-03-15
  • 出版单位:安徽大学学报(自然科学版)
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目(51872002,21771001);; 安徽省高等学校自然科学研究重点项目(KJ2018A0025);; 中国科学院光伏与节能材料重点实验室开放基金资助项目(PECL2018KF04)
  • 语种:中文;
  • 页:6-22
  • 页数:17
  • CN:34-1063/N
  • ISSN:1000-2162
  • 分类号:TM53
摘要
纳米结构铁基金属氧化物/氢氧化物(如Fe_2O_3,Fe_3O_4及FeOOH等),因具有较高的理论比电容和较宽的负向电位窗口,被认为是一种潜在的理想超级电容器负极材料,但Fe基电极大多数具有较差的导电性及不稳定的电化学性能,使其实际应用受到阻碍.为此,科研人员为提高其导电性及电化学稳定性做了大量的工作.该文概述提高Fe基纳米结构负极材料导电性和电化学稳定性的有效方法,介绍Fe基纳米结构负极材料在纳米结构设计和合成方面的最新研究进展,展望其未来的应用前景.
        Nanostructured Fe-based metal oxides/hydroxides such as Fe_2O_3, Fe_3O_4, FeOOH have high theoretical specific capacitance and wide negative potential working window, but they have several drawbacks such as poor conductivity, structural instability during charge-discharge processes, which seriously hinders their practical application. Therefore, researchers have done a lot of work to improve their electrical conductivity and electrochemical stability. In this paper, the effective methods for improving the conductivity and electrochemical stability of Fe-based nanostructured kathode materials were reviewed. The latest research progress of Fe-based nanostructured kathode materials in nanostructure design and synthesis was introduced, and its future application prospects were expected.
引文
[1] GAO Z, BUMGARDNER C, SONG N, et al. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication[J]. Nature Communications, 2016, 7: 11586.
    [2] LIU J, WANG J, XU C, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design[J]. Advanced Science (Weinh), 2018, 5 (1): 1700322.
    [3] VLAD A, SINGH N, GALANDE C, et al. Design considerations for unconventional electrochemical energy storage architectures[J]. Advanced Energy Materials, 2015, 5 (19): 1402115.
    [4] ZHU Y W, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332 (6037): 1537-1541.
    [5] BEIDAGHI M, GOGOTSI Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science, 2014, 7 (3): 867-884.
    [6] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Review, 2012, 41 (2): 797-828.
    [7] LIU J, ZHANG L, WU H B, et al. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film[J]. Energy & Environmental Science, 2014, 7 (11): 3709-3719.
    [8] EL-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 2013, 4: 1475.
    [9] RAMYA R, SIVASUBRAMANIAN R, SANGARANARAYANAN M V. Conducting polymers-based electrochemical supercapacitors: progress and prospects[J]. Electrochimica Acta, 2013, 101: 109-129.
    [10] ALPER J P, WANG S, ROSSI F, et al. Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors[J]. Nano Letters, 2014, 14 (4): 1843-1847.
    [11] TANG X, JIA R, ZHAI T, et al. Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7 (49): 27518-27525.
    [12] ZHANG X, LUO J, TANG P, et al. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading[J]. Nano Energy, 2017, 31: 311-321.
    [13] LIU S, LEE S C, PATIL U, et al. Hierarchical MnCo-layered double hydroxides@Ni (OH)2 core-shell heterostructures as advanced electrodes for supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5 (3): 1043-1049.
    [14] QU Q, YANG S, FENG X. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors[J]. Advanced Materials, 2011, 23 (46): 5574-5580.
    [15] CHEN Y C, LIN Y G, HSU Y K, et al. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors[J]. Small, 2014, 10 (18): 3803-3810.
    [16] LEE J S, SHIN D H, JUN J, et al. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors[J]. ChemSusChem, 2014, 7 (6): 1676-1683.
    [17] YANG P, DING Y, LIN Z, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes[J]. Nano Letters, 2014, 14 (2): 731-736.
    [18] LIN Y, WANG X, QIAN G, et al. Additive-driven self-assembly of well-ordered mesoporous carbon/iron oxide nanoparticle composites for supercapacitors[J]. Chemistry of Materials, 2014, 26 (6): 2128-2137.
    [19] CHAUDHARI N K, CHAUDHARI S, YU J S. Cube-like alpha-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors[J]. ChemSusChem, 2014, 7 (11): 3102-3111.
    [20] ZENG Y, HAN Y, ZHAO Y, et al. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors[J]. Advanced Energy Materials, 2015, 5 (12): 1402176.
    [21] LIU T, LING Y, YANG Y, et al. Investigation of hematite nanorod-nanoflake morphological transformation and the application of ultrathin nanof lakes for electrochemical devices[J]. Nano Energy, 2015, 12: 169-177.
    [22] ZENG Y, YU M, MENG Y, et al. Iron-based supercapacitor electrodes: advances and challenges[J]. Advanced Energy Materials, 2016, 6 (24): 1601053.
    [23] LU X, ZENG Y, YU M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors[J]. Advanced Materials, 2014, 26 (19): 3148-3155.
    [24] CHEN L F, YU Z Y, MA X, et al. In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors[J]. Nano Energy, 2014, 9: 345-354.
    [25] LI J, ZHANG W, ZAN G, et al. A high-performance dual-function material: self-assembled super long alpha-Fe2O3 hollow tubes with multiple heteroatom (C-, N- and S-) doping[J]. Dalton Transactions, 2016, 45 (32): 12790-12799.
    [26] CHEN L F, YU Z Y, WANG J J, et al. Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors[J]. Nano Energy, 2015, 11: 119-128.
    [27] GUO M, BALAMURUGAN J, LI X, et al. Hierarchical 3D cobalt-doped Fe3O4 nanospheres@NG hybrid as an advanced anode material for high-performance asymmetric supercapacitors[J]. Small, 2017, 13 (33): 1701275.
    [28] AGHAZADEH M, GANJALI M R. Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization[J]. Journal of Materials Science, 2017, 53 (1): 295-308.
    [29] AGHAZADEH M, KARIMZADEH I, GANJALI M R, et al. Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations[J]. Journal of Materials Science: Materials in Electronics, 2017, 28 (23): 18121-18129.
    [30] AGHAZADEH M, KARIMZADEH I, MARAGHEH M G, et al. Gd3+ doped Fe3O4 nanoparticles with proper magnetic and supercapacitive characteristics: a novel synthesis platform and characterization[J]. Korean Journal of Chemical Engineering, 2018, 35 (6): 1341-1347.
    [31] AGHAZADEH M. Enhancing the supercapacitive properties of iron oxide electrode through Cu2+-doping: cathodic electrosynthesis and characterization[J]. International Journal of Electrochemical Science, 2018, 13: 1355-1366.
    [32] TANG P Y, HAN L J, GEN A, et al. Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors[J]. Nano Energy, 2016, 22: 189-201.
    [33] SETHURAMAN B, PURUSHOTHAMAN K K, MURALIDHARAN G. Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors[J]. RSC Advaces, 2014, 4 (9): 4631-4637.
    [34] YU Z, MOORE J, CALDERON J, et al. Coil-type asymmetric supercapacitor electrical cables[J]. Small, 2015, 11 (39): 5289-5295.
    [35] LU X F, CHEN X Y, ZHOU W, et al. Alpha-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7 (27): 14843-14850.
    [36] WANG L, YANG H, LIU X, et al. Constructing hierarchical tectorum-like alpha-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie-International Edition, 2017, 56 (4): 1105-1110.
    [37] PARK J W, NA W, JANG J. Hierarchical core/shell janus-type α-Fe2O3/PEDOT nanoparticles for high performance flexible energy storage devices[J]. Journal of Materials Chemistry A, 2016, 4 (21): 8263-8271.
    [38] JABEEN N, HUSSAIN A, XIA Q, et al. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0. 5MnO2 nanosheet assembled nanowall arrays[J]. Advanced Materials, 2017, 29 (32): 1700804.
    [39] ZHANG D, SHAO Y, KONG X, et al. Hierarchical carbon-decorated Fe3O4 on hollow CuO nanotube array: fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor[J]. Chemical Engineering Journal, 2018, 349: 491-499.
    [40] LI R, BA X, ZHANG H, et al. Conformal multifunctional titania shell on iron oxide nanorod conversion electrode enables high stability exceeding 30 000 cycles in aqueous electrolyte[J]. Advanced Functional Materials, 2018, 28 (28): 1800497.
    [41] TOROKER M C. Theoretical insights into the mechanism of water oxidation on nonstoichiometric and titanium-doped Fe2O3 (0001)[J]. The Journal of Physical Chemistry C, 2014, 118 (40): 23162-23167.
    [42] SUN S, ZHAI T, LIANG C, et al. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale[J]. Nano Energy, 2018, 45: 390-397.
    [43] HU Y, GUAN C, KE Q, et al. Hybrid Fe2O3 nanoparticle clusters/RGO paper as an effective negative electrode for flexible supercapacitors[J]. Chemistry of Materials, 2016, 28 (20): 7296-7303.
    [44] GUAN D, GAO Z, YANG W, et al. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material[J]. Materials Science and Engineering: B, 2013, 178 (10): 736-743.
    [45] OH I, KIM M, KIM J. Deposition of Fe3O4 on oxidized activated carbon by hydrazine reducing method for high performance supercapacitor[J]. Microelectronics Reliability, 2015, 55 (1): 114-122.
    [46] QI T, JIANG J, CHEN H, et al. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life[J]. Electrochimica Acta, 2013, 114: 674-680.
    [47] XIAO T, YANG C, LU Y, et al. One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2014, 25 (8): 3364-3374.
    [48] CHEN D, ZHOU S, QUAN H, et al. Tetsubo-like α-Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 341: 102-111.
    [49] WANG Y, SHEN C, NIU L, et al. Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/ Fe2O3 composites for high-performance aqueous asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4 (25): 9977-9985.
    [50] ZHAO J, LI Z, YUAN X, et al. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni (OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as free-standing advanced electrodes[J]. Advanced Energy Materials, 2018, 8 (12): 1702787.
    [51] XIA L, LI X, WU X, et al. Fe3O4 nanoparticles embedded in cellulose nanofibre/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6 (36): 17378-17388.
    [52] LI Y, XU J, FENG T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27 (14): 1606728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700