用户名: 密码: 验证码:
中红外大气背景辐射测量系统及误差分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement System and Error Analysis of Mid-Infrared Atmospheric Background Radiation
  • 作者:陈双远 ; 许方宇 ; 王飞翔 ; 袁晓伟 ; 罗志远 ; 陈骥 ; 罗永芳
  • 英文作者:Chen Shuangyuan;Xu Fangyu;Wang Feixiang;Yuan Xiaowei;Luo Zhiyuan;Chen Ji;Luo Yongfang;Astronomical Opto-Electronic Laboratory, Yunnan Observatories, Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Physics and Electronic Information, Yunnan Normal University;Yunnan KIRO-CH Photonics Co., Ltd.;
  • 关键词:大气光学 ; 大气辐射 ; 辐射测量 ; 辐射定标 ; 误差分析
  • 英文关键词:atmospheric optics;;atmospheric radiance;;radiation measurement;;radiation calibration;;error analysis
  • 中文刊名:光学学报
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院云南天文台天文光电实验室;中国科学院大学;云南师范大学物理与电子信息学院;云南北方驰宏光电有限公司;
  • 出版日期:2018-10-20 11:56
  • 出版单位:光学学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金联合基金(Y3GJ231002)
  • 语种:中文;
  • 页:9-18
  • 页数:10
  • CN:31-1252/O4
  • ISSN:0253-2239
  • 分类号:P407;TN219
摘要
为研究大气背景辐射和仪器辐射规律、控制仪器热辐射和仪器精度,设计了一套大气背景辐射测量系统。分析了测量系统各组件和辐射定标等各类误差源对总测量误差的影响,还分析了定标精度的影响因素,确定了测量工作的改进方向。结果表明:该系统在定标区间内的测量误差主要是定标误差和随机误差,两者分别为2.4719%和0.0790%;合成误差为2.4732%。当用该系统测量大气背景辐射时,对大多数优良的天文台站而言,大气辐射强度远低于定标时的辐射强度,因此需进行外推测量。对外推测量误差的估计结果表明,外推测量可能导致较大的测量误差。为提高大气背景辐射测量精度,更低辐射强度的标准辐射源不可或缺。研制了大气背景辐射测量系统,并进行了野外实测等工作,这为大口径红外天文望远镜系统的研制并将其实际应用于红外天文观测提供了基础。
        To investigate the laws of atmospheric background radiation and instrument radiation as well as control the instrument thermal radiation and instrument accuracy, a measurement system of atmospheric background radiation is designed. The effects of various error sources, such as each component of this measurement system and radiation calibration, on the total measurement error are analyzed. Meanwhile, the factors influencing the accuracy of calibration are also analyzed. Finally, the direction of improving the measurement work is determined. These results show that the measurement error of this system in the calibration region is mainly composed of the radiometric calibration error and random error, whose values are 2.4719% and 0.0790%, respectively. In addition, the composite error is 2.4732%. For most of excellent astronomy sites, the atmospheric radiation intensity is far lower than the calibration value, and thus the extrapolation measurement is unavoidable. The estimation results of the extrapolation measurement errors indicate that the extrapolation measurement can lead to relatively high measurement errors. Therefore, in order to improve the precision of atmospheric background radiation measurement, the standard radiation sources with low radiation intensity are indispensable. The development of the atmospheric background radiation measurement system and the measurement work in the field are helpful to experience accumulation for the further development of large aperture infrared astronomical telescope systems and their practical applications to infrared astronomical observations.
引文
[1] Luo Q M, Zeng S Q, Liu X D. Simulation of infrared radiation of earth atmosphere system[J]. Opto-Electronic Engineering, 1996, 23(1): 1-6. 骆清铭, 曾绍群, 刘贤德. 地球大气系统红外辐射的仿真[J]. 光电工程, 1996, 23(1): 1-6.
    [2] Cai Y, Liu Y L, Dai C M, et al. Simulation analysis of target and background contrast in condition of cirrus atmosphere[J]. Acta Optica Sinica, 2017, 37(8): 0801001. 蔡熠, 刘延利, 戴聪明, 等. 卷云大气条件下目标与背景对比度模拟分析[J]. 光学学报, 2017, 37(8): 0801001.
    [3] Zhao Y J, Wei H L, Chen X H, et al. Infrared radiative properties of cirrus clouds in shortwave spectral region[J]. High Power Laser and Particle Beams, 2007, 19(9): 1449-1453. 赵燕杰, 魏合理, 陈秀红, 等. 卷云短波红外辐射特性[J]. 强激光与粒子束, 2007, 19(9): 1449-1453.
    [4] Adler-Golden S, Smith D R, Vail J, et al. Simulations of mesospheric and thermospheric IR radiance measured in the CIRRIS-1A shuttle experiment[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(18): 1397-1410.
    [5] O′Neil R R, Gardiner H A B, Gibson J J. MSX: remotely sensed observations of atmospheric infrared radiance and spatial structure[J]. Proceedings of SPIE, 2002, 4539: 446-454.
    [6] O′Neil R R, Gardiner H A B, Gibson J J, et al. Midcourse Space Experiment (MSX): plans and capability for the measurement of infrared earthlimb and terrestrial backgrounds′[J]. Proceedings of SPIE, 1994, 2223: 264-274.
    [7] López-Puertas M, Funke B, Gil-López S, et al. Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson interferometer for passive atmospheric sounding (MIPAS)[J]. Comptes Rendus Physique, 2005, 6(8): 848-863.
    [8] Evans W F J, Puckrin E. Combined measurements of thermal emission and solar absorption of atmospheric carbon monoxide[J]. Atmospheric Environment, 1999, 33(13): 2081-2088.
    [9] Dai C M, Zhang Z Y, Ma L, et al. Measuring and analysis of atmospheric transfer and environment background character on infrared telescope site[J]. Infrared and Laser Engineering, 2016, 45(12): 32-38. 戴聪明, 张志勇, 马力, 等. 红外望远镜站址大气传输和环境背景特性的测量分析研究[J]. 红外与激光工程, 2016, 45(12): 32-38.
    [10] Zhao Z J, Xu F Y, Xu S C, et al. Measurement of atmospheric infrared radiance and extinction characteristics[J]. Acta Optica Sinica, 2018, 38(4): 0401004. 赵志军, 许方宇, 徐世春, 等. 大气红外辐射及消光特性实测研究[J]. 光学学报, 2018, 38(4): 0401004.
    [11] Smith W L, Howell H B, Woolf H M. The use of interferometric radiance measurements for sounding the atmosphere[J]. Journal of the Atmospheric Sciences, 1979, 36(4): 566-575.
    [12] Smith W L, Revercomb H E, Huang H L, et al. High resolution interferometer sounder: the retrieval of atmospheric temperature and water vapor profiles[C]. 3rd Conference on Satellite Meteorology and Oceanography, 1988: 266-271.
    [13] Meng X Q. Theoretical modeling of the spectral radiation of the earth atmosphere[D]. Chengdu: University of Electric Science and Technology of China, 2009. 孟雪琴. 地球大气背景光谱辐射特性的理论建模[D]. 成都: 电子科技大学, 2009.
    [14] Zhang T S, Liu W Q, Gao M G, et al. The study of infrared background radiation of earth and atmosphere by airborne FTIR spectrometer[J]. Spectroscopy and Spectral Analysis, 2006, 26(6): 1018-1021. 张天舒, 刘文清, 高闽光, 等. 机载FTIR地球大气红外背景辐射光谱特征研究[J]. 光谱学与光谱分析, 2006, 26(6): 1018-1021.
    [15] Wei H L, Chen X H, Dai C M, et al. Ground-based measurements of infrared atmospheric background spectral radiances[J]. Infrared and Laser Engineering, 2012, 41(2): 284-290. 魏合理, 陈秀红, 戴聪明, 等. 地基大气背景红外光谱辐射特性测量[J]. 红外与激光工程, 2012, 41(2): 284-290.
    [16] Spiro I J. Overview of infrared measurement programs[J]. Proceedings of SPIE, 1981, 0265: 214-220.
    [17] Dooling D. Space sentries[J]. IEEE Spectrum, 1997, 34(9): 50-59.
    [18] Kampf D, Rippel H. Infrared background signature survey experiment (IBSS) test results of the optical subsystem[J]. Proceedings of SPIE, 1989, 1118: 113-120.
    [19] Barnhart D A, Feig J R, Grigsby E C. Miniaturesensor technology integration (MSTI): small space platform program[J]. Proceedings of SPIE, 1993, 1940: 174-184.
    [20] Mill J D, O′Neil R R, Price S, et al. Midcourse space experiment: introduction to the spacecraft, instruments, and scientific objectives[J]. Journal of Spacecraft and Rockets, 1994, 31(5): 900-907.
    [21] Zhao Z J, Xu F Y, Gao L, et al. Multivariate calibration model for measurement of 3-5 μm infrared sky brightness[J]. Infrared and Laser Engineering, 2017, 46(10): 1004004. 赵志军, 许方宇, 高玲, 等. 3~5 μm红外天空亮度测量的多元定标模型[J]. 红外与激光工程, 2017, 46(10): 1004004.
    [22] Zhou Y X. The study of radiometric calibration and error estimation of space-based infrared camera[D]. Harbin: Harbin Institute of Technology, 2014. 周宇星. 天基红外测量相机辐射定标及误差估计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [23] Yu K. The overall design of processing system for space-based atmospheric background measurement and the study of data mining[D]. Harbin: Harbin Institute of Technology, 2014. 于鲲. 天基大气背景测量处理系统总体设计与数据挖掘方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700