用户名: 密码: 验证码:
北戴河退化滨海湿地土壤微生物多样性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Microbial Diversity in Degradation Areas of Beidaihe Coastal Wetland
  • 作者:何昌飞 ; 郑立 ; 高伟 ; 迟雯丹 ; 李倩 ; 韩彬 ; 丁金凤 ; 徐希媛
  • 英文作者:HE Chang-fei;ZHENG Li;GAO Wei;CHI Wen-dan;LI Qian;HAN Bin;DING Jin-feng;XU Xi-yuan;Marine Ecology Research Center, First Institute of Oceanography,MNR;Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao);
  • 关键词:高通量测序 ; 滨海湿地 ; 群落结构和多样性 ; 环境因子
  • 英文关键词:high throughput sequencing;;coastal wetland;;community structure and diversity;;environment factors
  • 中文刊名:海洋科学进展
  • 英文刊名:Advances in Marine Science
  • 机构:自然资源部第一海洋研究所海洋生态研究中心;青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室;
  • 出版日期:2019-04-15
  • 出版单位:海洋科学进展
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金委员会-山东省人民政府联合基金项目——海洋生态与环境科学(U1406404);; 国家自然科学基金项目——海洋玫瑰杆菌群体感应及其退出机制对藻菌关系的调节(41776176);; 蓬莱19-3赔偿款项目——北戴河滨海湿地生态修复项目
  • 语种:中文;
  • 页:138-149
  • 页数:12
  • CN:37-1387/P
  • ISSN:1671-6647
  • 分类号:S154.3
摘要
滨海湿地退化是全球关注的一个热点研究问题,其中湿地退化对土壤细菌群落结构和生态学功能的影响程度目前知之甚少。对北戴河大潮坪滨海湿地植被区和退化区土壤细菌多样性、环境因子和共现性关系的研究显示,滨海湿地植被区微生物香农指数显著高于退化区的,细菌OTU注释结果表明变形菌门(Proteobacteria)、浮霉菌门(Planctomycetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)是主要的细菌类群,它们相对丰度共占群落的85%~95%。厚壁菌门的芽胞杆菌纲(Bacilli)在退化区丰度显著高于植被区的,浮霉菌门的Planctomycetia和Phycisphaerae在植被区的丰度明显高于退化区的。环境因子分析表明,退化区域微生物群落结构受土壤多环芳烃(PAHs)质量比和土壤含盐量的影响,其中土壤PAHs质量比高于1.273 mg/kg时,微生物多样性呈现下降趋势,土壤含盐量和细菌的丰富度呈负相关关系。属间共现性关系(Co-occurrence)研究表明随着滨海湿地的退化,土壤中固碳细菌的生态学功能逐渐增强。对滨海湿地退化影响土壤细菌群落结构和生态学功能的进一步认识,为滨海湿地生态修复和效果评价提供了科学依据。
        Coastal wetland degradation is a global ecological hot issue. However, little is known about the relationships between wetland degradation and structure and function of soil microbe. In the present study, we investigated the microbial diversity, environment factors and co-occurrence relationship in degradation areas and vegetation areas of Beidaihe Dachaoping coastal wetland. The Shannon index of the microbe in vegetation area was significantly higher than that of in degradation area of wetland, OTU annotation results indicated that Proteobacteria, Planctomycetes, Firmicutes, Actinobacteria, Gemmatimonadetes, Acidobacteria, and Chloroflexi dominated in the coastal wetland, and accounted for 85% to 95% of bacterial communities at the phylum level. In the class level, the abundance of Bacilli was significantly higher in degradation areas than that of vegetation areas. The abundance of Planctomycetia and Phycisphaerae both belonged to Planctomycetes was higher in the vegetation area than that of degradation area. The environment factors analysis indicated that the microbial community was affected by the concentration of polycyclic aromatic hydrocarbons(PAHs) and salinity in the degradation area. And when the concentration of PAHs was higher than 1.273 mg/kg, microbial diversity presented a downward trend. A negatively correlated relationship was observed between salinity and OTU richness. The co-occurrence relation analysis indicated that the function of carbon-fixing bacteria was enhanced in the degradation areas. This study showed that the degradation of coastal wetland changed the soil bacterial diversity and community structure, enhanced the understanding of soil bacteria community and function in vegetation and degradation areas, and provided a valuable reference for the ecological restoration and effective evaluation of coastal wetlands.
引文
[1] CAROL E,KRUSE E,TEJADA M.Surface water and groundwater response to the tide in coastal wetlands:assessment of a marsh in the outer Río de la Plata estuary,Argentina[J].Journal of Coastal Research,2013(65):1098-1103.
    [2] XU W H,YAN W,LI X,et al.Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary,China:concentrations,mass loading and ecological risks[J].Environmental Pollution,2013,182(6):402-407.
    [3] DAVIDSON N C.How much wetland has the world lost?Long-term and recent trends in global wetland area[J].Marine & Freshwater Research,2014,65(10):936-941.
    [4] LABAUGH J W.Wetland ecosystem studies from a hydrologic perspective[J].Jawra Journal of the American Water Resources Association,2010,22(1):1-10.
    [5] XING W L,WANG C,XIONG J,et al.Effects of Reclamation on soil carbon,nitrogen storage and enzyme activity in dongtan wetland of pudong[J].Ecology and Environmental Sciences,2018,27(4):651-657.
    [6] SCHOEPFER V A,BERNHARDT E S,BURGIN A J.Iron clad wetlands:Soil iron-Sulfur buffering determines coastal wetland response to salt water incursion[J].Journal of Geophysical Research Biogeosciences,2015,119(12):2209-2219.
    [7] JONKERS H M,VAN Der MAAREL M J E C,VAN GEMERDEN H,et al.Dimethylsulfoxide reduction by marine sulfate-reducing bacteria[J].Fems Microbiology Letters,2010,136(3):283-287.
    [8] PARELLADA E A,RAMOS A N,FERRERO M,et al.Squamocin mode of action to stimulate biofilm formation of Pseudomonas plecoglossicida J26,a PAHs degrading bacterium[J].International Biodeterioration & Biodegradation,2011,65(7):1066-1072.
    [9] BUI T D,MAIER S W,AUSTIN C M.Land cover and land use change related to shrimp farming in coastal areas of Quang Ninh,Vietnam using remotely sensed data[J].Environmental Earth Sciences,2014,72(2):441-455.
    [10] YU Y,WANG H,LIU J,et al.Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary[J].European Journal of Soil Biology,2012,49(2):12-21.
    [11] VIZZA C,WEST W E,JONES S E,et al.Regulators of coastal wetland methane production and responses to simulated global change[J].Biogeosciences,2017,14(2):1-29.
    [12] ZHAGN X L,LI P Y,LI P,et al.Present conditions and prospects of study on coastal wetlands in china[J].Advances in Marine Science,2005,23(1):87-95.张晓龙,李培英,李萍,等.中国滨海湿地研究现状与展望[J].海洋科学进展,2005,23(1):87-95.
    [13] LAND L,WHITE J R,GAMBRELL R P.Microbial response to potential soil-stabilizing polymer amendments for coastal wetland Restoration[J].Soil Science Society of America Journal,2011,75(6):2398.
    [14] SCHLOSS P D,WESTCOTT S L,THOMAS R,et al.Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities[J].Applied & Environmental Microbiology,2009,75(23):7537.
    [15] DESANTIS T Z,HUGENHOLTZ P,LARSEN N,et al.Greengenes,a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J].Applied and Environmental Microbiology,2006,72(7):5069-5072.
    [16] BACCI G,BANI A,BAZZICALUPO M,et al.Evaluation of the performances of ribosomal database project (RDP) classifier for taxonomic assignment of 16S rRNA metabarcoding sequences generated from illumina-solexa NGS[J].Journal of Genomics,2015,3:36-39.
    [17] DIXON P V.A package of R functions for community ecology[J].Journal of Vegetation Science,2010,14(6):927-930.
    [18] ROBINSON M D,MCCARTHY D J,SMYTH G K.EdgeR:a bioconductor package for differential expression analysis of digital gene expression data[J].Bioinformatics,2010,26(1):139-140.
    [19] GINESTET C.Ggplot2:elegant graphics for data analysis[J].Journal of the Royal Statistical Society,2011,174(1):245-246.
    [20] BARBERáN A,BATES S T,CASAMAYOR E O,et al.Using network analysis to explore co-occurrence patterns in soil microbial communities[J].ISME Journal,2012,6(2):343.
    [21] FENG J,YU X,GUO F,et al.Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants[J].Environmental Microbiology,2014,16(8):2421-2432.
    [22] FIDLER D.Power and loyalty defined by proximity to influential relations[J].Computational Social Networks,2015,2(1):1-10.
    [23] LIU Y,CHANG X Y,LIN T T,et al.Relationships between salinity,conductivity and water content of soil in pristine tidal flat in Jiangsu province[J].Water Saving Irrigation,2015(8):4-7.刘洋,常晓燕,李海妮,林婷婷,等.苏北典型滨海滩涂草滩土壤盐度、电导率与含水率的关系[J].节水灌溉,2015(8):4-7.
    [24] LIN F,HAN B,DING Y,et al.Distribution characteristics,sources,and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from the Qinhuangdao coastal wetland,China[J].Marine Pollution Bulletin,2018,127:788-793.
    [25] BAUMARD P,BUDZINSKI H,GARRIGUES P,et al.Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level[J].Marine Pollution Bulletin,1998,36(12):951-960.
    [26] WALDROP M P,ZAK D R,SINSABAUGH R L.Microbial community response to nitrogen deposition in northern forest ecosystems[J].Soil Biology & Biochemistry,2004,36(9):1443-1451.
    [27] ZHU C S,MAHLICH Y,MILLER M,et al.Fusion db:assessing microbial diversity and environmental preferences via functional similarity networks[J].Nucleic Acids Research,2018,34(13):304-312.
    [28] KIM M C,PAK S H,RIM S G,et al.Luteolibacter arcticus sp.nov.isolated from high Arctic tundra soil,and emended description of the genus luteolibacter[J].International Journal of Systematic & Evolutionary Microbiology,2015,65(6):1922-1928.
    [29] TRAPPEN S V,MERGAERT J,SWINGS J.Loktanella salsilacus gen.nov.sp.nov.loktanella fryxellensis sp.nov.and loktanella vestfoldensis sp.nov.new members of the rhodobacter group,isolated from microbial mats in Antarctic lakes[J].International Journal of Systematic & Evolutionary Microbiology,2004,54(4):1263-1269.
    [30] HWANG C Y,BAE G D,YIH W,et al.Marivita cryptomonadis gen.nov.sp.nov.and marivita litorea sp.nov.of the family rhodobacteraceae,isolated from marine habitats[J].International Journal of Systematic & Evolutionary Microbiology,2009,59(7):1568-1575.
    [31] STRAUB K L,RAINEY F A,WIDDEL F.Rhodovulum iodosum sp.nov.and rhodovulum robiginosum sp.nov.two new marine phototrophic ferrous-iron-oxidizing purple bacteria[J].International Journal of Systematic and Evolutionary Mirobology,1999,49(2):729-735.
    [32] KLEINDIENST S,HERBST F A,STAGARS M,et al.Diverse sulfate-reducing bacteria of the desulfosarcina/desulfococcus clade are the key alkane degraders at marine seeps[J].The ISME Journal,2014,8(10):2029-2044.
    [33] KUNTZE K,VOGT C,RICHNOW H H,et al.Combined application of pcr-based functional assays for the detection of aromatic-compound-degrading anaerobes[J].Applied and Environmental Microbiology,2011,77(14):5056-5061.
    [34] BITRIAN M,GONZáLEZ R H,PARIS G,et al.Blue-light-dependent inhibition of twitching motility in acinetobacter baylyi ADP1:additive involvement of three bluf-domain-containing proteins[J].Microbiology,2013,159(9):1828-1841.
    [35] CARDINALE M,GRUBE M,ERLACHER A,et al.Bacterial networks and co-occurrence relationships in the lettuce root microbiota[J].Environmental Microbiology,2015,17(1):239-252.
    [36] HAN W J,ZHAO S,LIU H H,et al.Isolation identification and agarose degradation of a polysaccharide-degrading marine bacterium Persicobacter sp.JZB09[J].Acta Microbiologica Sinica,2012,52(6):776.
    [37] WONG H L,VISSCHER P T,WHITELII R A,et al.Dynamics of archaea at fine spatial scales in Sark bay mat microbiomes[J].Scientific Reports,2017,7:46160.
    [38] FISHMAN K S,AKIMOV V N,SUZINA N E,et al.Sulfate-reducing bacteria desulfobulbus sp strain bh from a freshwater lake in Guizhou Province,China[J].Inland Water Biology,2013,6(1):18-23.
    [39] MAINTINGUER S I,SAKAMOTO I K,ADORNO M A T,et al.Diversity of anaerobic bacteria in sediments from a subtropical reservoir[J].Lakes & Reservoirs:Research & Management,2016,21(4):351-361.
    [40] BHATTACHARYYA P N,JHA D K.Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J].World Journal of Microbiology and Biotechnology,2012,28(4):1327-1350.
    [41] XU S Q,WANG Y D,GUO C C,et al.Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation[J].Wetlands,2017,37(1):99-108.
    [42] STROUS M,PELLETIER E,MANGENOT S,et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794.
    [43] WANG Y,SHENG H F,HE Y,et al.Comparison of the levels of bacterial diversity in freshwater,intertidal wetland,and marine sediments by using millions of illumina tags[J].Applied and Environmental Microbiology,2012,78(23):8264-8271.
    [44] ZHAO Y,CHEN Y,LI Z,et al.Environmental factors have a strong impact on the composition and diversity of the gut bacterial community of Chinese black honeybees[J].Journal of Asia-Pacific Entomology,2018,21(1):261-267.
    [45] CLARKE E,BALDWIN A H.Responses of wetland plants to ammonia and water level[J].Ecological Engineering,2002,18(3):257-264.
    [46] RATH K M,ROUSK J.Salt effects on the soil microbial decomposer community and their role in organic carbon cycling:a review[J].Soil Biology & Biochemistry,2015,81:108-123.
    [47] WANG Z Y,XIN Y Z,GAO D M,et al.Microbial community characteristics in a degraded wetland of the Yellow River delta[J].Pedosphere,2010,20(4):466-478.
    [48] FERIS K P,HRISTOVA K,GEBREYESUS B,et al.A shallow btex and mtbe contaminated aquifer supports a diverse microbial community[J].Microbial Ecology,2004,48(4):589-600.
    [49] BACHOON D S,HODSON R E,ARAUJO R.Microbial community assessment in oil-impacted salt marsh sediment microcosms by traditional and nucleic acid-based indices[J].Journal of Microbiological Methods,2001,46(1):37-49.
    [50] ZHOU H W,LUAN T G,ZOU F,et al.Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment[J].Journal of Hazardous Materials,2008,152:1179-1185.
    [51] ZHOU H W,WONG A H Y,YU R M K,et al.Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment[J].Microbial Ecology,2009,58(1):153-160.
    [52] JIAO S,LIU Z S,LIN Y B,et al.Bacterial communities in oil contaminated soils:biogeography and co-occurrence patterns[J].Soil Biology & Biochemistry,2016,98:64-73.
    [53] ZUBKOV M V.Photoheterotrophy in marine prokaryotes[J].Journal of Plankton Research,2009,31(9):933-938.
    [54] SHARSHAR T,CITERIO G,ANDREWS P J D,et al.Neurological examination of critically ill patients:a pragmatic approach (report of an esicm expert panel)[J].Intensive Care Medicine,2014,40(4):484-495.
    [55] XING W L,WANG C,XIONG J,et al.Effects of reclamation on soil carbon,nitrogen storage and enzyme activity in Dongtan wetland of Pudong[J].Ecology & Environmental Sciences,2018,27(4):651-657.邢文黎,王臣,熊静,等.浦东东滩湿地围垦对土壤碳氮储量及酶活性影响[J].生态环境学报,2018,27(4):651-657.
    [56] SCHOEPFER V A,BERNHARDT E S,BURGIN A J.Iron clad wetland:soil iron-sulfur buffering determines coastal wetland response to salt water incursion[J].Journal of Geophysical Research Biogeosciences,2015,119(12):2209-2219.
    [57] MUNSCH P,GEOFFROY V A,ALATOSSAVA T et al.Application of siderotyping for characterization of pseudomonas tolaasii and “seudomonas reactans”?Isolates associated with brown blotch disease of cultivated mushrooms[J].Applied & Environmental Microbiology,2000,66(11):4834-4841.
    [58] CUI J,CHEN X P,NIE M,et al.Effects of spartina alterniflora invasion on the abundance,diversity,and community structure of sulfate reducing bacteria along a successional gradient of coastal salt marshes in China[J].Wetlands,2017,37(2):221-232.
    [59] WILSON A M W,FORSYTH C.Restoring near-shore marine ecosystems to enhance climate security for island ocean states:aligning international processes and local practices[J].Marine Policy,2018,93:284-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700