用户名: 密码: 验证码:
富氧燃烧方式下烟气中SO_3和Hg的排放及控制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on emission and control of SO_3 and mercury in oxy-fuel combustion flue gas
  • 作者:刘仕尧 ; 黄家玉 ; 罗锦洪 ; 邓双 ; 郭凤艳
  • 英文作者:Shiyao LIU;Jiayu HUANG;Jinhong LUO;Shuang DENG;Fengyan GUO;Chinese Research Academy of Environmental Sciences;School of Energy and Environmental Engineering, Hebei University of Technology;Shanxi Academy for Environmental Planning;
  • 关键词:富氧燃烧 ; SO_3 ; Hg ; 排放规律 ; 污染物控制
  • 英文关键词:oxy-fuel combustion;;SO_3;;mercury;;emission characteristics;;pollutant control
  • 中文刊名:过程工程学报
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国环境科学研究院;河北工业大学能源与环境工程学院;山西省环境规划院;
  • 出版日期:2019-06-04 15:26
  • 出版单位:过程工程学报
  • 年:2019
  • 期:S1
  • 基金:国家自然科学基金青年基金资助项目(编号:51608500);; 国家重点研发计划资助项目(编号:2016YFC0209201)
  • 语种:中文;
  • 页:120-127
  • 页数:8
  • CN:11-4541/TQ
  • ISSN:1009-606X
  • 分类号:X701
摘要
富氧燃烧技术可有效控制温室气体排放,是一种具有应用潜力的节能减排技术。本工作系统总结分析了富氧燃烧方式下关键烟气组分(SO_x, NO_x, H_2O, Cl_2/HCl等)对SO_3和Hg排放规律的影响及飞灰对烟气中SO_3吸附去除和Hg富集规律的影响,提出了富氧燃烧方式下较优的具可行性的污染物协同控制技术建议,为富氧燃烧技术工业应用面临的污染物协同控制提供重要参考。分析了目前富氧燃烧方式下SO_3和Hg排放规律及优化控制研究存在的问题,对未来的研究方向提出了建议。要点:(1)富氧燃烧方式下烟气中SO_3和Hg浓度明显提高。烟气中SO_x, NO_x, H_2O, Cl_2/HCl及飞灰等对SO_3和Hg排放规律具有重要影响。(2)从脱硝、除尘、脱硫工艺优化方面,提出了富氧燃烧方式下具有可行性的污染物协同控制技术建议,为工业应用面临的污染物协同控制问题提供重要参考。(3)指出了未来富氧燃烧方式下SO_3和Hg排放及优化控制的研究方向,如实际工况多因素耦合作用下排放规律、烟气中污染物的协同控制规律、关键污染物的迁移规律及协同控制工艺路线优化研究。
        Oxy-fuel combustion technology, an effective greenhouse gas emission control technology, is an energy conservation and emission reduction technology with potential application. In this work the effects of flue gas components(SO_x, NO_x, H_2O, Cl_2/HCl etc.) on the formation of SO_3 and Hg under oxy-fuel combustion condition, and the effects of fly ash on the adsorption and removal of SO_3 and Hg enrichment in flue gas were systematically summarized and analysed. The feasible technical suggestions for synergistic control of SO_3 and Hg under oxy-fuel combustion were put forward, which provides an important reference for the synergistic control of pollutants in the industrial application of oxy-fuel combustion. At the same time, the emission characteristics of SO_3 and Hg under the current oxy-fuel combustion and the existing problems in the research direction of optimization control were analysed, and some suggestions for the future research direction were put forward. Key learning points:(1) The SO_3 and Hg concentrations in flue gas increased significantly under oxy-fuel combustion. Flue gas components(SO_x, NO_x, H_2 O, Cl_2/HCl) and fly ash had important effects on SO_3 and Hg emissions.(2) From the aspects of optimization of denitrification, dedusting and desulfurization process, feasible technical suggestions for synergetic control of pollutants under oxy-fuel combustion were put forward, which can provide important reference for the synergetic control of pollutants faced by industrial applications.(3) The future research directions of SO_3 and Hg emission and optimization control under oxy-fuel combustion were pointed out, such as the emission law under the coupling action of multiple factors in actual working conditions, the synergetic control law of pollutants in flue gas, the migration law of key pollutants and the optimization of synergetic control process route.
引文
[1]郑楚光,赵永椿,郭欣.中国富氧燃烧技术研发进展[J].中国电机工程学报,2014,34(23):3856-3864.Zheng C G,Zhao Y C,Guo X.Research and development of oxy-fuel combustion in China[J].Proceedings of the CSEE,2014,34(23):3856-3864.
    [2]刘典福,周超群,孙雍春.O2/CO2燃烧技术的研究现状及进展[J].广州化工,2017,45(24):28-30.Liu D F,Zhou C Q,Sun Y C.Research progress and expectation of O2/CO2 combustion technology[J].Guangzhou Chemical Industry,2017,45(24):28-30.
    [3]Belo L P,Elliott L K,Stanger R J,et al.High-temperature conversion of SO2 to SO3:homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing[J].Energy&Fuels,2014,28:7243-7251.
    [4]Sp?rl R,Belo L,Shah K,et al.Mercury emissions and removal by ash in coal-fired oxy-fuel combustion[J].Energy&Fuels,2014,28(1):123-135.
    [5]Sp?rl R,Maier J,Belo L,et al.Mercury and SO3 emissions in oxy-fuel combustion[J].Energy Procedia,2014,63:386-402.
    [6]Sp?rl R,Maier J,Scheffknecht G.Sulphur oxide emissions from dust-fired oxy-fuel combustion of coal[J].Energy Procedia,2013,37:1435-1447.
    [7]吴辉,邱勇,刘豪,等.O2/CO2气氛中SO2和NO对HCl均相氧化Hg的影响研究[J].工程热物理学报,2013,(12):2418-2422.Wu H,Qiu Y,Liu H,et al.Experimental study about NO and SO2influence on homogeneous mercury oxidation by HCl under O2/CO2atmosphere[J].Journal of Engineeging Thermophysics,2013,(12):2418-2422.
    [8]王卉,段钰锋,李雅宁,等.煤在富氧流化床燃烧条件下汞的析出及形态分布[J].化工进展,2016,35(10):3362-3366.Wang H,Duan Y F,Li Y N,et al.Mercury emission and speciation distribution under oxy coal combustion in fluidized bed[J].Chemical Industry and Engineerning Progress,2016,35(10):3362-3366.
    [9]李雅宁,段钰锋,王卉,等.O2/CO2气氛下煤中汞的释放特性[J].化工进展,2017,36(1):372-377.Li Y N,Duan Y F,Wang H,et al.Release characteristics of mercury in coal under O2/CO2 atmosphere[J].Chemical Industry and Engineerning Progress,2017,36(1):372-377.
    [10]Yang J,Ma S,Zhao Y,et al.Mercury emission and speciation in fly ash from a 35 MWth large pilot boiler of oxyfuel combustion with different flue gas recycle[J].Fuel,2017,195:174-181.
    [11]Wang H,Duan Y F,Li Y N,et al.Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas[J].Chemical Engineering Journal,2016,300:230-235.
    [12]代维,文军红,羊东明,等.铝合金换热器汞腐蚀与防护[J].石油化工腐蚀与防护,2009,26(6):36-38.Dai W,Wen J H,Yang D M,et al.Mercury corrosion and protection of aluminum alloy heat exchanger[J].Corrosion&Protection in Petrochemical Industry,2009,26(6):36-38.
    [13]Fleig D,Alzueta U,Normann F,et al.Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions[J].Combustion&Flame,2013,160(6):1142-1151.
    [14]Fleig D,Andersson K,Normann F,et al.SO3 formation under oxyfuel combustion conditions[J].Industrial&Engineering Chemistry Research,2011,50:8505-8514.
    [15]Wang H,Duan Y,Li Y N,et al.Experimental study on mercury oxidation in a fluidized bed under O2/CO2 and O2/N2 atmospheres[J].Energy&Fuels,2016,30(6):5065-5070.
    [16]肖海平,韩高岩,董琳,等.烟气循环方式对SO3生成的影响[J].动力工程学报,2015,35(11):918-922.Xiao H P,Han G Y,Dong L,et al.Influence of flue gas circulation mode on the formation of SO3[J].Journal of Chinese Society of Power Engineering,2015,35(11):918-922.
    [17]Sarbassov Y,Duan L,Jeremias M,et al.SO3 formation and the effect of fly ash in a bubbling fluidised bed under oxy-fuel combustion conditions[J].Fuel Processing Technology,2017,167:314-321.
    [18]Duan L B,Duan Y Q,Sarbassov Y,et al.SO3 formation under oxy-CFB combustion conditions[J].International Journal of Greenhouse Gas Control,2015,43:172-178.
    [19]Wang F,Shen B,Yang J,et al.Review of mercury formation and capture from CO2-enriched oxy-fuel combustion flue gas[J].Energy&Fuels,2017,31(2):1053-1064.
    [20]Wu H,Liu H,Wang Q,et al.Experimental study of homogeneous mercury oxidation under O2/CO2 atmosphere[J].Proceedings of the Combustion Institute,2013,34(2):2847-2854.
    [21]Wang H,Wang S,Duan Y F,et al.Experimental study of homogeneous Hg oxidation in air and oxy-simulated flue gas[J].Journal of the Energy Institute,2019,92(2):257-264.
    [22]Han B,Kim H J,Kim Y J.Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion[J].Science of the Total Environment,2010,408(21):5158-5164.
    [23]Mitsui Y,Imada N,Kikkawa H,et al.Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system[J].International Journal of Greenhouse Gas Control,2011,5(S1):S143-S150.
    [24]Wang X,Liu X,Li D,et al.Effect of steam and sulfur dioxide on sulfur trioxide formation during oxy-fuel combustion[J].International Journal of Greenhouse Gas Control,2015,43:1-9.
    [25]杭的强,胡长兴,郭瑞堂,等.富氧燃烧气氛中H2O和HCl对HgO氧化的影响[J].热力发电,2016,45(7):72-77.Hang D Q,Hu C X,Guo R T,et al.Effect of H2O and HCl on oxygen-enriched oxidation of elementary mercury combustion atmosphere[J].Thermal Power Generation,2016,45(7):72-77.
    [26]Wang H,Duan Y F,Li Y N,et al.Prediction of synergic effects of H2O,SO2,and HCl on mercury and arsenic transformation unde roxy-fuel combustion conditions[J].Energy&Fuels,2016,30(10):8463-8468.
    [27]Fleig D,Andersson K,Johnsson F.Influence of operating conditions on SO3 formation during air and oxy-fuel combustion[J].Industrial&Engineering Chemistry Research,2012,51(28):9483-9491.
    [28]Armitage J W,Cullis C F.Studies of the reaction between nitrogen dioxide and sulfur dioxide[J].Combustion&Flame,1971,16(2):125-130.
    [29]Fernández-Miranda N,Lopez-Anton M A,Díaz-Somoano M,et al.Effect of oxy-combustion flue gas on mercury oxidation[J].Environmental Science&Technology,2014,48(12):7164-7170.
    [30]Ting T,Stanger R,Wall T.Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions[J].International Journal of Greenhouse Gas Control,2013,18(Complete):15-22.
    [31]Winkler F,Schoedel N,Zander H J,et al.Cold deNOx development for oxyfuel power plants[J].International Journal of Greenhouse Gas Control,2011,5(S1):S231-S237.
    [32]Li X S,Huang Q,Luo C,et al.Effect of acid gases on elemental mercury removal in oxy-fuel CO2 compression process[J].Energy&Fuels,2017,32(4):4334-4340.
    [33]Yao H,Luo G Q,Xu M H,et al.Mercury emissions and species during combustion of coal and waste[J].Energy&Fuels,2006,20:1946-1950.
    [34]Pavlish J H,Sondreal E A,Mann M D,et al.Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,82(2):89-165.
    [35]Wall T,Liu Y,Spero C,et al.An overview on oxyfuel coal combustion-state of the art research and technology development[J].Chemical Engineering Research&Design,2009,87(8):1003-1016.
    [36]Izquierdo M T,de las Obras-Loscertales M,de Diego L F,et al.Mercury emissions from coal combustion in fluidized beds under oxy-fuel and air conditions:influence of coal characteristics and O2concentration[J].Fuel Processing Technology,2017,167:695-701.
    [37]Galbreath K C,Zygarlicke C J.Mercury transformations in coal combustion flue gas[J].Fuel Processing Technology,2000,65/66:289-310.
    [38]Belo L P,Elliott L K,Stanger R J,et al.Impacts of sulfur oxides on mercury speciation and capture by fly ash during oxy-fuel pulverized coal combustion[J].Energy&Fuels,2016,30(10):8658-8664.
    [39]Granite E J,Presto A A.Comment on the“role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon”[J].Energy&Fuels,2008,22(5):3557-3558.
    [40]J?Rgensen T L,Livbjerg H,Glarborg P.Homogeneous and heterogeneously catalyzed oxidation of SO2[J].Chemical Engineering Science,2007,62(16):4496-4499.
    [41]Andrzej U,Marek T.Catalytic oxidation of sulfur dioxide[J].Catalysis Reviews,1980,21(1):73-133.
    [42]Kim K H,Choi J S.Kinetics and mechanism of the oxidation of sulfur dioxide on alpha-Fe2O3[J].Carcinogenesis,1981,85(17):2447-2450.
    [43]Duan L,Zhou W,Li H,et al.Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor[J].Korean Journal of Chemical Engineering,2011,28(9):1952-1955.
    [44]Galloway B D,Sasmaz E,Padak B.Binding of SO3 to fly ash components:CaO,MgO,Na2O and K2O[J].Fuel,2015,145(1):79-83.
    [45]Antonia Lopez-Antona M,Perrya R,Abad-Valleb P,et al.Speciation of mercury in fly ashes by temperature programmed decomposition[J].Fuel Processing Technology,2011,92(3):707-711.
    [46]Zhuang Y,Pavlish J H.Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling[J].Environmental Science&Technology,2012,46(8):4657-4665.
    [47]Jew A D,Rupp E C,Geatches D L,et al.Mercury interaction with the fine fraction of coal-combustion fly ash in a simulated coal power plant flue gas stream[J].Energy&Fuels,2015,29(9):6025-6038.
    [48]Kostova I,Vassileva C,Dai S,et al.Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants[J].International Journal of Coal Geology,2013,116/117(Complete):227-235.
    [49]Fernández-Miranda N,Rumayor M,Lopez-Anton M A,et al.Mercury retention by fly ashes from oxy-fuel processes[J].Energy&Fuels,2015,29(4):2227-2233.
    [50]Bhardwaj R,Chen X,Vidic R D.Impact of fly ash composition on mercury speciation in simulated flue gas[J].Journal of the Air&Waste Management Association,2009,59(11):1331-1338.
    [51]He P,Zhang X B,Peng X L,et al.Effect of fly ash composition on the retention of mercury in coal-combustion flue gas[J].Fuel Processing Technology,2016,142:6-12.
    [52]Wang F,Wang S,Meng Y,et al.Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion[J].Fuel,2016,163:232-239.
    [53]Abad-Valle P,Lopez-Anton M A,Diaz-Somoano M,et al.Influence of iron species present in fly ashes on mercury retention and oxidation[J].Fuel,2011,90(8):2808-2811.
    [54]Toftegaard M B,Brix J,Jensen P A,et al.Oxy-fuel combustion of solid fuels[J].Progress in Energy&Combustion Science,2010,36(5):581-625.
    [55]Abad-Valle P,Lopez-Anton M A,Diaz-Somoano M,et al.The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J].Chemical Engineering Journal,2011,174(1):86-92.
    [56]Quir-s-álvarez M,Diaz Somoano M,Bongartz W,et al.Mercury interaction on modified activated carbons under oxyfuel combustion conditions[J].Energy&Fuels,2018,32(4):5405-5408.
    [57]Hower J C,Senior C L,Suuberg E M,et al.Mercury capture by native fly ash carbons in coal-fired power plants[J].Progress in Energy and Combustion Science,2010,36(4):510-529.
    [58]Wilcox J,Rupp E,Ying S C,et al.Mercury adsorption and oxidation in coal combustion and gasification processes[J].International Journal of Coal Geology,2012,90:4-20.
    [59]Ren J,Chen J,Luo Y,et al.Research on vapor mercury adsorption by Ca-based sorbents[C]//IEEE 2009 International Conference on Energy and Environment Technology.2009:504-508.
    [60]Deng S,Shu Y,Li S,et al.Chemical forms of the fluorine,chlorine,oxygen and carbon in coal fly ash and their correlations with mercury retention[J].Journal of Hazardous Materials,2016,301:400-406.
    [61]Yang J,Zhao Y,Chang L,et al.Mercury adsorption and oxidation over cobalt oxide loaded magnetospheres catalyst from fly ash in oxyfuel combustion flue gas[J].Environmental Science&Technology,2015,49(13):8210-8218.
    [62]Zhang C,Song W,Zhang X,et al.Synthesis,characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture[J].Journal of Materials Science,2018,53(13):9429-9448.
    [63]杨用龙,苏秋凤,张杨,等.燃煤电站典型超低排放工艺的SO3脱除性能及排放特性[J/OL].中国电机工程学报,2019,39(10):2962-2970.Yang Y L,Su Q F,Zhang Y,et al.Removal performance and emission characteristics of SO3 by typical ultra-low emission technologies in coal-fired power plants[J/OL].Proceedings of the CSEE,2019,39(10):2962-2970.
    [64]李高磊,郭沂权,张世博,等.超低排放燃煤电厂SO3生成及控制的试验研究[J].中国电机工程学报,2019,39(4):1079-1086.Li G L,Guo X Q,Zhang S B,et al.Experimental research on SO3generation and control in ultra-low emission coal-fired power plant[J].Proceedings of the CSEE,2019,39(4):1079-1086.
    [65]华晓宇,章良利,宋玉彩,等.燃煤机组超低排放改造对汞排放的影响[J].热能动力工程,2016,31(7):110-116,139.Hua X Y,Zhang L L,Song Y C,et al.Influence of the ultra low emission modification of a coal-fired unit on the mercury emissions[J].Journal of Engineering for Thermal Energy&Power,2016,31(7):110-116,139.
    [66]崔立明,黄志杰,莫华,等.不同超低排放技术路线的协同脱汞实测与研究[J].中国电力,2017,50(10):136-139,143.Cui L M,Huang Z J,Mo H,et al.Test and study on synergic mercury removal performance of environmental protection facilities at ultralow pollutants emission[J].Electric Power,2017,50(10):136-139,143.
    [67]赵毅,韩立鹏.660 MW超低排放燃煤电站汞分布特征研究[J].环境科学学报,2019,39(3):853-858.Zhao Y,Han L P.Distribution characteristics of mercury in 660 MWcoal-fired powerplant with ultra-low emission[J].Acta Scientiae Circumstantiae,2019,39(3):853-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700