用户名: 密码: 验证码:
碳捕集能耗分析模型的对比研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative analysis of thermodynamic theoretical models for energy consumption of CO_2 capture
  • 作者:Shuang-jun ; LI ; Shuai ; DENG ; Li ; ZHAO ; Wei-cong ; XU ; Xiang-zhou ; YUAN ; Yang-zhou ; ZHOU ; Ya-wen ; LIANG
  • 英文作者:Shuang-jun LI;Shuai DENG;Li ZHAO;Wei-cong XU;Xiang-zhou YUAN;Yang-zhou ZHOU;Ya-wen LIANG;Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University), Ministry of Education;International Cooperation Research Centre of Carbon Capture in Ultra-low Energy-consumption;Department of Chemical and Biological Engineering, Korea University;Tianjin Newcen Technical Co., Ltd.;
  • 关键词:碳捕集 ; 能耗 ; 理论模型 ; 热力学碳泵
  • 英文关键词:CO_2 capture;;Energy consumption;;Theoretical model;;Carbon pump
  • 中文刊名:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 英文刊名:浙江大学学报A辑(应用物理与工程)(英文版)
  • 机构:Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University), Ministry of Education;International Cooperation Research Centre of Carbon Capture in Ultra-low Energy-consumption;Department of Chemical and Biological Engineering, Korea University;Tianjin Newcen Technical Co., Ltd.;
  • 出版日期:2019-11-03
  • 出版单位:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 年:2019
  • 期:11
  • 基金:Project supported by the National Key Research and Development Program of China(No.2017YFE0125100);; the National Natural Science Foundation of China(No.51876134);; the Research Plan of Science and Technology of Tianjin City(No.18YDYGHZ00090),China
  • 语种:英文;
  • 页:75-85
  • 页数:11
  • CN:33-1236/O4
  • ISSN:1673-565X
  • 分类号:X701
摘要
目的:碳捕集能耗较高的技术瓶颈,亟待热力学理论在交叉研究中解决。热力学理论工具在碳捕集技术能耗水平评估方面的准确性、有效性和局限性都尚未明确,且碳捕集能耗研究的共性规律仍未被把握。本文对现有能耗分析模型进行对比以揭示碳捕集技术能耗的实质,并提出普适性和针对性恰当的能耗分析模型,以明确碳捕集能耗水平的"天花板"。创新点:1.提出热力学碳泵模型,分析碳捕集技术理想能耗;2.对比不同碳捕集能耗分析模型,通过案例分析说明其不同特点和理想化程度的差异。方法:1.通过概念比拟,类比热泵概念,提出热力学碳泵概念,并阐述碳捕集过程是通过热或功驱动的二氧化碳从低浓度向高浓度逆向富集的非自发过程(图2和3),实现碳捕集技术实质的理想化概括;2.通过热力学理论推导,获得基于热力学碳泵模型的碳捕集最小理想能耗(公式(13));3.通过案例分析,论证热力学碳泵模型相对混合气体分离模型和碳泵模型的理想化程度是否更高(图9),以及其中碳源、汇的无限质容假设是否更接近理想状态。结论:1.通过碳泵模型可以得到碳捕集技术的理想能耗,并且碳泵模型相对混合气体分离模型在使用时更便捷。2.热力学碳泵模型相对碳泵模型的理想化程度更高;因为忽略碳源、汇由传质引起的不可逆性,热力学碳泵模型计算所得最小理想能耗比碳泵模型计算所得理想能耗更小。3.通过热力学碳泵模型分析直接空气碳捕集技术表明,其最小理想能耗是相同反应条件下烟气处理技术的4.916倍。
        CO_2 capture is considered an effective technology to control the CO_2 level in the atmosphere, but its development has been restricted due to its high energy requirement during CO_2 concentration. Theoretical thermodynamic models have been used not only to predict energy consumption, but also to elucidate the energy conversion mechanism. However, the existing theoretical models have been applied without a clear consideration of boundaries, conditions, and limitations in thermodynamic images. Consequently, the results from such theoretical models can lead to a misunderstanding of the energy conversion mechanism during CO_2 capture. A comparative analysis of three theoretical thermodynamic models, namely the mixture gas separation(MGS), carbon pump(CP), and thermodynamic carbon pump(TCP) models, was presented in this paper. The characteristics of these models for determining the energy consumption of CO_2 capture were clarified and compared in relation to their practical application. The idealization levels of these models were demonstrated through comparison of theoretical estimates of the energy required for CO_2 concentration. The correctness and convenience of the CP model were proved through a comparison between the CP and MGS models. The TCP model proposed in this study was proved to approach the ideal status more closely than the CP ¨model. Finally, an application of the TCP model was presented through a case study on direct capture of CO_2 from the air(DAC).
引文
Ben-Mansour R,Habib MA,Bamidele OE,et al.,2016.Carbon capture by physical adsorption:materials,experimental investigations and numerical modeling and simulation-a review.Applied Energy,161:225-255.https://doi.org/10.1016/j.apenergy.2015.10.011
    GCCSI(Global CCS Institute),2018.The Global Status of CCS:2018.https://www.globalccsinstitute.com/resources/global-stat us-report/
    Haynes WM,2011.CRC Handbook of Chemistry and Physics,91st Edition.CRC Press,Boca Raton,USA.
    House KZ,Harvey CF,Aziz MJ,et al.,2009.The energy penalty of post-combustion CO2 capture&storage and its implications for retrofitting the U.S.installed base.Energy&Environmental Science,2(2):193-205.https://doi.org/10.1039/B811608C
    IPCC(Intergovernmental Panel on Climate Change),2018.Global Warming of 1.5oC.Special report,IPCC.https://www.ipcc.ch/sr15/
    Jassim MS,Rochelle GT,2006.Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine.Industrial&Engineering Chemistry Research,45(8):2465-2472.https://doi.org/10.1021/ie050547s
    Jiang L,Roskilly AP,Wang RZ,2018.Performance exploration of temperature swing adsorption technology for carbon dioxide capture.Energy Conversion and Management,165:396-404.https://doi.org/10.1016/j.enconman.2018.03.077
    Lackner KS,2013.The thermodynamics of direct air capture of carbon dioxide.Energy,50:38-46.https://doi.org/10.1016/j.energy.2012.09.012
    Li SJ,Deng S,Zhao L,et al.,2018.Mathematical modeling and numerical investigation of carbon capture by adsorption:literature review and case study.Applied Energy,221:437-449.https://doi.org/10.1016/j.apenergy.2018.03.093
    Lively RP,Realff MJ,2016.On thermodynamic separation efficiency:adsorption processes.AIChE Journal,62(10):3699-3705.https://doi.org/10.1002/aic.15269
    Odeh NA,Cockerill TT,2008.Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage.Energy Policy,36(1):367-380.https://doi.org/10.1016/j.enpol.2007.09.026
    Turns SR,2006.Thermodynamics:Concepts and Applications.Cambridge University Press,New York,USA.
    Wilcox J,2012.Carbon Capture.Springer,New York,USA,p.21-25.
    Zhao B,Liu FZ,Cui Z,et al.,2017.Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant:process improvement.Applied Energy,185:362-375.https://doi.org/10.1016/j.apenergy.2016.11.009
    Zhao RK,Deng S,Liu YN,et al.,2017a.Carbon pump:fundamental theory and applications.Energy,119:1131-1143.https://doi.org/10.1016/j.energy.2016.11.076
    Zhao RK,Zhao L,Deng S,et al.,2017b.A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle.Energy,137:495-509.https://doi.org/10.1016/j.energy.2017.01.158
    Zhao RK,Deng S,Zhao L,et al.,2017c.Experimental study and energy-efficiency evaluation of a 4-step pressurevacuum swing adsorption(PVSA)for CO2 capture.Energy Conversion and Management,151:179-189.https://doi.org/10.1016/j.enconman.2017.08.057
    Zhao RK,Deng S,Zhao L,et al.,2017d.Performance analysis of temperature swing adsorption for CO2 capture using thermodynamic properties of adsorbed phase.Applied Thermal Engineering,123:205-215.https://doi.org/10.1016/j.applthermaleng.2017.05.042

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700