用户名: 密码: 验证码:
山涧口流域油松人工林水化学特征及离子流转
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydro-chemical Characteristics and Ions Transfer of Pinus tabulaeformis Plantation in Shanjiankou Basin
  • 作者:李联地
  • 英文作者:Li Liandi;Hebei Academy of Forestry Science;
  • 关键词:油松人工林 ; 水化学特征 ; 离子流转
  • 英文关键词:Pinus tabulaeformis plantation;;Hydro-chemical characteristic;;Ion transfer
  • 中文刊名:东北林业大学学报
  • 英文刊名:Journal of Northeast Forestry University
  • 机构:河北省林业科学研究院;
  • 出版日期:2019-06-12 11:54
  • 出版单位:东北林业大学学报
  • 年:2019
  • 期:07
  • 基金:林业科技创新平台运行补助项目(2017-LYPT-DW-004);; 河北省重点研发计划项目(18226815D)
  • 语种:中文;
  • 页:81-85+131
  • 页数:6
  • CN:23-1268/S
  • ISSN:1000-5382
  • 分类号:S715
摘要
为了研究小五台山山涧口流域油松(Pinus tabulaeformis Carr.)人工林水化学特征及离子流转,收集生长初期、生长中期、生长后期的降水及再分配过程(穿透水、树干径流、枯落物渗透水、坡面径流)水样,并测定分析水样的pH值,Ca~(2+)、Mg~(2+)、K~+、Na~+、Zn~(2+)、Mn~(2+)、Fe~(2+)、Cu~(2+)质量浓度。结果表明:在穿透水和树干径流中,Ca~(2+)、Mg~(2+)、K~+、Mn~(2+)、Fe~(2+)质量浓度由大到小的排序为生长初期、生长中期、生长后期; Cu~(2+)质量浓度由大到小的排序为生长后期、生长初期、生长中期。在枯落物渗透水和坡面径流中Ca~(2+)质量浓度由大到小的顺序表现为生长中期、生长初期、生长后期; Mg~(2+)、Mn~(2+)、Fe~(2+)质量浓度由大到小的排序为生长初期、生长中期、生长后期; Cu~(2+)质量浓度由大到小的排序为生长中期、生长后期、生长初期; K~+、Na~+、Zn~(2+)质量浓度无规律。与同期降水比较,生长初期再分配过程中Mg~(2+)、Mn~(2+)、Na~+、K~+、Ca~(2+)、Fe~(2+)、Zn~(2+)表现为淋溶流失。生长中期再分配过程中Ca~(2+)、Mn~(2+)、Fe~(2+)表现为淋溶流失; Mg~(2+)、K~+在枯落物渗透水中淋溶流失,在其他再分配过程中表现为吸收; Na~+在树干径流中表现为淋溶流失,在其他再分配过程中表现为吸收; Zn~(2+)在树干径流中表现为吸收,在其他再分配过程中少量淋溶流失; Cu~(2+)在枯落物渗透水中表现为淋溶流失,在其他再分配过程中无变化。生长后期再分配过程中Ca~(2+)、Mg~(2+)、Zn~(2+)、Mn~(2+)表现为淋溶流失,Na~+、Cu~(2+)表现为吸收; K~+、Fe~(2+)在枯落物渗透水中表现为淋溶流失,在其他再分配过程中表现为吸收。pH值在3个阶段都下降。油松林将超过91%的降水截蓄在林地,油松生长必须的K~+、Cu~(2+)处于消耗状态,合计净余量由大到小的排序为生长初期、生长中期、生长后期。
        In order to study on hydro-chemical characteristics and ions transfer of Pinus tabulaeformis plantation in Xiaowutaishan Mountain of Shanjiankou Basin,we collected water samples of rainfall and rainfall redistribution processes( through-fall,stemflow,litter-through,runoff on slope) at early growth stage,middle growth stage,and later growth stage,and determined pH value of the water sample and the contents of Ca~(2+) ,Mg~(2+) ,K~+,Na~+,Zn~(2+) ,Mn~(2+) ,Fe~(2+) ,and Cu~(2+) . In throughfall and stemflow,the descending order of Ca~(2+) ,Mg~(2+) ,K~+,Mn~(2+) ,and Fe~(2+) in content was early growth stage,middle growth stage,and later growth stage,and the descending order of content for Cu~(2+) was later growth stage,early growth stage,and middle growth stage. In litter-through and runoff on Slope,the descending order of content for Ca~(2+) was middle growth stage,early growth stage,and later growth stage,the descending orders of content for Mg~(2+) ,Mn~(2+) and Fe~(2+) were early growth stage,middle growth stage,and later growth stage,and the descending order of content for Cu~(2+) was middle growth stage,later growth stage,and early growth stage,and the descending orders of content for K~+,Na~+and Zn~(2+) were irregularly. Compared with rainfall in the same period,at early growth stage,the Mg~(2+) ,Mn~(2+) ,Na~+,K~+,Ca~(2+) ,Fe~(2+) ,Zn~(2+) showed leaching loss in all rainfall redistribution processes. At middle growth stage,Ca~(2+) ,Mn~(2+) and Fe~(2+) showed leaching loss in all rainfall redistribution processes; Mg~(2+) and K~+showed leaching loss in litter-through and absorption in other rainfall redistribution processes; Na~+showed leaching loss in stemflow and absorption in other rainfall redistribution processes; Zn~(2+) showed absorption in stemflow and leaching loss in other rainfall redistribution processes; Cu~(2+) showed leaching loss in litter-through and unchanged in other rainfall redistribution processes. At later growth stage,Ca~(2+) ,Mg~(2+) ,Zn~(2+) ,and Mn~(2+) showed leaching loss,and Na~+and Cu~(2+) showed absorption in all rainfall redistribution processes; K~+and Fe~(2+) showed leaching loss in litter-through and absorption in other rainfall redistribution processes. The pH value was reduced in all three stages. The P. tabulaeformis plantation retained more than 91% rainfall,K~+and Cu~(2+) needed for growth of P. tabulaeformis were in consumption state,and the descending order of total net surplus was early growth stage,middle growth stage,and later growth stage.
引文
[1]周梅,余新晓,王广山,等.国外森林环境水化学研究综述[J].中国水土保持科学,2003,1(4):78-82.
    [2]鲁如坤,史陶均.金华地区降雨中养分含量的初步研究[J].土壤学报,1979,16(1):81-84.
    [3]LINDBERG S E,LOVETT G M,RICHTER D D,et al.Atmospheric depositionand canopy interactions of major ions in a forest[J].Science,1986,231:141-145.
    [4]PUCKETT L J.Estimates of ion sources in deciduous and coniferousthrough-fall[J].Atmos Environ,1990,24(3):545-555.
    [5]鲍文,包维楷,丁德蓉,等.森林植被对降水水化学的影响[J].生态环境,2004,13(1):112-115.
    [6]王巧红,宫渊波,张君.森林生态系统对大气氮沉降的响应[J].四川林业科技,2006,27(1):19-25.
    [7]刘菊秀,张德强,周国逸,等.鼎湖山酸沉降背景下主要森林类型水化学特征初步研究[J].应用生态学报,2003,14(8):1223-1228.
    [8]崔明星,何兴元,陈玮,等.河北木兰围场油松年轮生态学的初步研究[J].应用生态学报,2008,19(11):2339-2345.
    [9]郭存珍.油松林生长周期调查分析[J].陕西农业科学,2009(6):114-115.
    [10]余新晓,史宇,王贺年,等.森林生态系统水文过程与功能[M].北京:科学出版社,2013.
    [11]森林生态系统长期定位观测方法:LY/T 1952-2011[S].北京:中国标准出版社,2011.
    [12]陈莉莉,王得祥,张宋智.不同密度油松人工林土壤特性及水源涵养功能研究[J].西北农林科技大学学报(自然科学版),2013,41(7):141-149.
    [13]周国娜,杨新兵,刘阳,等.冀北山地油松蒙古栎混交林水化学特征[J].水土保持学报,2012,26(2):192-195.
    [14]卢晓强,杨万霞,丁访军,等.茂兰喀斯特地区森林降水分配的水化学特征[J].生态学杂志,2015,34(8):2115-2122.
    [15]何晓丽,吴艳宏,周俊,等.贡嘎山地区地表水化学特征及水环境质量评价[J].环境科学,2016,37(10):3798-3805.
    [16]马程,董文倩,郑彩霞.油松针叶细胞膜脂肪酸组成的季节性变化研究[J].安徽农业科学,2010,38(19):10303-10305.
    [17]陈俊刚,余新晓,毕华兴,等.典型森林树种对大气颗粒物湿沉降的影响[J].水土保持学报,2016,30(4):312-317.
    [18]陶豫萍,吴宁,罗鹏,等.森林植被截留对大气污染物湿沉降的影响[J].中国生态农业学报,2007,15(4):9-12.
    [19]柯馨姝,张凯,盛立芳.大气沉降中重金属元素污染研究进展[R].北京:中国环境科学学会,2014:6146-6152.
    [20]崔玲华.植物学基础[M].北京:中国林业出版社,2005.
    [21]韩华.水杨酸调控3个梨品种叶片衰老及光合速率的效应研究[D].保定:河北农业大学,2007.
    [22]朱建林,郭景唐,欧国菁.油松人工林营养元素含量时间变异的研究[J].北京林业大学学报,1989,11(3):100-102.
    [23]刘增文,强虹.森林生态系统养分循环研究中若干问题的讨论[J].南京林业大学学报(自然科学版),2002,26(4):27-30.
    [24]王登芝,向星政,聂立水.北京西山不同人工林枯落物层的水化学性质[J].应用生态学报,2007,18(11):2637-2641.
    [25]胡珊珊,于静洁,胡垄,等.华北石质山区油松林对降水再分配过程的影响[J].生态学报,2010,30(7):1751-1757.
    [26]周彬,韩海荣,康峰峰,等.太岳山不同郁闭度油松人工林降水分配特征[J].生态学报,2013,33(5):1645-1653.
    [27]SCHOOLING J T,CARLYLE-MOSES D E.The influence of rainfall depth class and deciduous tree traits on stemflow production in an urban park[J].Urban Ecosystems,2015,18(4):1261-1284.
    [28]ZHOU Y Y,SHI C X,FAN X L,et al.The influence of climate change and anthropogenic activities on annual runoff of Huangfuchuan basin in northwest China[J].Theoretical and Applied Climatology,2015,120(1/2):137-146.
    [29]罗小东,王全九,谭帅.基于土壤钠离子含量的不同施用量石膏改良剂的改良效果[J].干旱地区农业研究,2016,34(1):288-292.
    [30]张杰,陈立新,乔璐,等.大庆市不同土壤类型盐碱化特征及评价[J].东北林业大学学报,2010,38(7):119-122.
    [31]王林权,邵明安.高等植物对钠离子的吸收、运输和累积[J].干旱地区农业研究,2005,23(5):244-249.
    [32]刘世海,余新晓,于志民.密云水库集水区人工油松水源保护林降水化学性质研究[J].应用生态学报,2001,12(5):697-700.
    [33]陈圆,马钦彦,王玉涛,等.北京密云水库及入库径流水化学特征分析[J].北京林业大学学报,2007,29(3):105-111.
    [34]马向东,林明磊,郑慧莲.森林水化学过程研究综述[J].污染防治技术,2009,22(1):49-51,75.
    [35]徐敬,张小玲,徐晓斌,等.大气传输对华北区域本底地区降水化学成分的影响[J].气候与环境研究,2011,16(1):105-112.
    [36]叶小峰,王自发,安俊岭.东亚地区降水离子成分时空分布及其特征分析[J].气候与环境研究,2005,10(1):115-123.
    [37]MARKEWITZ D,RICHTER D D,ALLEN H L,et al.Three decades of observed soil acidification in the calhoun experimental forest:Has acid rain made a difference?[J].Science Society of America Journal,1998,62(5):1428-1439.
    [38]邵东华,任琴,宁心哲,等.油松和虎榛子不同林型根系分泌物组分及化感效应[J].浙江农林大学学报,2011,28(2):333-338.
    [39]顾新庆,张全锋,李联地,等.冀北地区落叶松人工林幼树死亡原因分析[J].林业科技开发,2004,18(4):32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700