用户名: 密码: 验证码:
杭州市西湖景区春季空气细菌多样性特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diversity of airborne bacterial community in spring in theWest Lake scenic areas of Hangzhou, China
  • 作者:楼秀芹 ; 郭卫俊 ; 姚文冲 ; 方治国
  • 英文作者:LOU Xiuqin;GUO Weijun;YAO Wenchong;FANG Zhiguo;Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention;School of Environmental Science and Engineering, Zhejiang Gongshang University;
  • 关键词:生物气溶胶 ; 西湖景区 ; 变形菌门 ; 细菌丰富度 ; 多样性指数
  • 英文关键词:bioaerosols;;West Lake scenic areas;;Proteobacteria;;bacterial richness;;diversity index
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:杭州市疾病预防控制中心微生物检验科;浙江工商大学环境科学与工程学院;
  • 出版日期:2019-01-18 09:24
  • 出版单位:生态学报
  • 年:2019
  • 期:08
  • 基金:浙江省自然科学基金项目(LY17D050006);; 国家自然科学基金项目(81402682);; 中国科学院生态环境研究中心城市与区域生态国家重点实验室开放基金项目(SKLURE2015-2-1)
  • 语种:中文;
  • 页:306-313
  • 页数:8
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q938
摘要
选取了杭州市西湖景区4个典型样点,利用高通量测序方法研究了其空气细菌多样性特征。结果表明,在细菌门水平上,各样点优势细菌为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes),其总相对含量在断桥残雪(MSBB)、柳浪闻莺(OSW)、宝石流霞(PSHFRC)和三潭印月(TPMM)分别为88.31%、86.03%、85.06%和89.28%,且不同样点优势菌群存在一定的差异,OSW和TPMM厚壁菌门分别占9.65%和11.6%,拟杆菌门分别占6.86%和5.55%,MSBB和PSHFRC拟杆菌门分别占7.31%和7.86%,厚壁菌门分别占7.09%和5.32%。在细菌属水平上,各样点优势菌属及含量差异显著,MSBB、TPMM、OSW和PSHFRC相对含量最高的菌属分别为马赛菌属(Massilia)、两面神菌属(Janibacter)、鞘氨醇单胞菌属(Sphingomonas)和甲基杆菌属(Methylobacterium),分别占6.22%、6.45%、6.05%和11.5%,各样点相对含量高于2%的细菌属有鞘氨醇单胞菌属、甲基杆菌属、薄层菌属(Hymenobacter)和异常球菌属(Deinococcus),这些菌属是西湖景区各样点共有的优势菌群;通过空气细菌OTU及多样性分析可知,MSBB空气细菌丰富度较高,均匀度较低,而PSHFRC丰富度较低,均匀度较高。杭州西湖景区不同样点空气细菌群落特征差异显著,且其丰富度和均匀度明显不同。
        The community composition of airborne bacteria was examined using high throughput sequencing at four selected sampling sites during spring in the West Lake scenic areas of Hangzhou, Zhejiang Province, China. The results showed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes at different sampling sites, and the relative content of these four phyla at the sampling sites of melting snow at broken bridge(MSBB), orioles singing in the willow(OSW), precious stone hill floating in rosy clouds(PSHFRC), and three pools mirroring the moon(TPMM) was 88.31%, 86.03%, 85.06% and 89.28%, respectively. Furthermore, a difference in the dominant bacterial phylum was detected at different sampling sites, and Firmicutes accounted for 9.65% and 11.6%, and Bacteroidetes 6.86% and 5.55% at OSW and TPMM, respectively. At the MSBB and PSHFRC sampling sites, Bacteroidetes accounted for 7.31% and 7.86%, and Firmicutes 7.09% and 5.32%, respectively. Significant differences in the airborne bacterial composition at the genus level were determined at the four selected sampling sites, and the most dominant bacterial genera were Massilia(6.22%), Janibacter(6.45%), Sphingomonas(6.05%), and Methylobacterium(11.5%) at the sampling sites of MSBB, TPMM, OSW, and PSHFRC, respectively. Sphingomonas, Methylobacterium, Hymenobacter, and Deinococcus were the common airborne bacteria at different sampling sites, that accounted for more than 2% of genera identified. Moreover, a high species richness and low homogeneity of airborne bacteria was detected at the MSBB sampling site, while a low species richness and high homogeneity was found at the PSHFRC sampling site. In general, significant differences in bacterial composition in the atmosphere were found at different sampling sites in the West Lake scenic areas of Hangzhou, and their richness and homogeneity were also significantly different.
引文
[1] Burge H A.Bioaerosols.Boca Raton:Lewis Publishers,1995:7- 7.
    [2] 杜睿.大气生物气溶胶的研究进展.气候与环境研究,2006,11(4):546- 552.
    [3] Christner B C,Morris C E,Foreman C M,Cai R,Sands D C.Ubiquity of biological ice nucleators in snowfall.Science,2008,319(5867):1214.
    [4] Christner B C,Cai R,Morris C E,McCarter K S,Foreman C M,Skidmore M L,Montross S N,Sands D C.Geographic,seasonal,and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow.Proceedings of the National Academy of Sciences of the United States of America,2008,105(48):18854- 18859.
    [5] Murray B J,O′Sullivan D,Atkinson J D,Webb M E.Ice nucleation by particles immersed in supercooled cloud droplets.Chemical Society Reviews,2012,41(19):6519- 6554.
    [6] O′Sullivan D,Murray B J,Ross J F,Whale T F,Price H C,Atkinson J D,Umo N S,Webb M E.The relevance of nanoscale biological fragments for ice nucleation in clouds.Scientific Reports,2015,5:8082.
    [7] 杜睿,王亚玲,梁宗敏.细菌气溶胶在大气冰核核化过程中作用的研究进展.中国环境科学,2013,33(1):30- 42.
    [8] 王亚玲,杜睿,梁宗敏,周宇光.冰核细菌Pseudomonas syringae是否可以影响大气的冰核核化过程.科学通报,2012,57(25):2413- 2418.
    [9] 王亚玲,杜睿,梁宗敏,李梓铭.大气主要污染物与细菌气溶胶在冰核核化过程中的作用:对液滴冻结温度的影响.中国科学:地球科学,2012,42(5):692- 700.
    [10] Kalogerakis N,Paschali D,Lekaditis V,Pantidou A,Eleftheriadis K,Lazaridis M.Indoor air quality—bioaerosol measurements in domestic and office premises.Journal of Aerosol Science,2005,36(5/6):751- 761.
    [11] Lighthart B.The ecology of bacteria in the alfresco atmosphere.FEMS Microbiology Ecology,1997,23(4):263- 274.
    [12] Bovallius A,Bucht B,Roffey R,An?s P.Three-year investigation of the natural airborne bacterial flora at four localities in Sweden.Applied and Environmental Microbiology,1978,35(5):847- 852.
    [13] Lindemann J,Constantinidou H A,Barchet W R,Upper C D.Plants as sources of airborne bacteria,including ice nucleation-active bacteria.Applied and Environmental Microbiology,1982,44(5):1059- 1063.
    [14] Mancinelli R L,Shulls W A.Airborne bacteria in an urban environment.Applied and Environmental Microbiology,1978,35(6):1095- 1101.
    [15] Martinez K F,Sheehy J W,Jones J H,Cusick L B.Microbial containment in conventional fermentation processes.Applied Industrial Hygiene,1988,3(6):177- 181.
    [16] Douwes J,Thorne P,Pearce N,Heederik D.Bioaerosol health effects and exposure assessment:progress and prospects.Annals of Occupational Hygiene,2003,47(3):187- 200.
    [17] Fang Z G,Ouyang Z Y,Zheng H,Wang X K,Hu L F.Culturable airborne bacteria in outdoor environments in Beijing,China.Microbial Ecology,2007,54(3):487- 496.
    [18] Fang Z G,Gong C J,Ouyang Z Y,Liu P,Sun L,Wang X Y.Characteristic and concentration distribution of culturable airborne bacteria in residential environments in Beijing,China.Aerosol and Air Quality Research,2014,14(3):943- 953.
    [19] Fang Z G,Yao W C,Lou X Q,Hao C M,Gong C J,Ouyang Z Y.Profile and characteristics of culturable airborne bacteria in Hangzhou,Southeast of China.Aerosol and Air Quality Research,2016,16(7):1690- 1700.
    [20] 姚文冲.基于高通量测序的南方典型旅游城市空气细菌群落特征研究.杭州:浙江工商大学,2017:33- 40.
    [21] 张旭.空气微生物群落结构组成及影响因素研究.杭州:浙江大学,2016:13- 17.
    [22] 王丹丹,林青,欧提库尔·玛合木提,杨红梅,娄恺.塔克拉玛干沙尘暴源区空气细菌群落多样性.微生物学报,2018,58(8):1420- 1430.
    [23] 凌琪,王晏平.黄山风景区夏季空气微生物分布特征初步研究.微生物学通报,2008,35(9):1379- 1384.
    [24] Amann R I,Ludwig W,Schleifer K-H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological Reviews,1995,59(1):143- 169.
    [25] 方治国,郝翠梅,姚文冲,欧阳志云.空气微生物群落解析方法:从培养到非培养.生态学报,2016,36(14):4244- 4253.
    [26] 方治国,欧阳志云,赵景柱,王效科,郑华.北京城市空气细菌群落结构与动态变化特征.微生物学报,2006,46(4):618- 623.
    [27] 胡卫萱,丁峰,宋文华,刘宪华.绿地绿化配置模式对空气中细菌含量的影响.环境与健康杂志,2009,26(6):546- 546.
    [28] 谢慧玲,李树人,袁秀云,刘国伟,高雪梅,曹瑜,贾静.植物挥发性分泌物对空气微生物杀灭作用的研究.河南农业大学学报,1999,33(2):127- 133.
    [29] 张薇.几种园林植物挥发性物质成分分析及抑菌活性研究[D].长沙:湖南大学,2007:35- 49.
    [30] 张风娟,李继泉,徐兴友,孟宪东,陈发菊.皂荚和五角枫挥发性物质组成及其对空气微生物的抑制作用.园艺学报,2007,34(4):973- 978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700