用户名: 密码: 验证码:
兴安落叶松和白桦细根形态对环境变化的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of fine root morphology of Larix gmelinii and Betula platyphylla to environmental changes
  • 作者:张俪予 ; 张军辉 ; 张蕾 ; 陈伟 ; 韩士杰
  • 英文作者:Zhang Liyu;Zhang Junhui;Zhang Lei;Chen Wei;Han Shijie;Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:冻土退化区 ; 细根形态 ; 菌根侵染率 ; 兴安落叶松 ; 白桦
  • 英文关键词:permafrost degraded region;;fine root morphology;;ectomycorrhizal colonization rate;;Larix gmelinii;;Betula platyphylla
  • 中文刊名:北京林业大学学报
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:中国科学院森林生态与管理重点实验室沈阳应用生态研究所;中国科学院大学;
  • 出版日期:2019-06-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金重点项目(41330530);国家自然科学基金面上项目(41575153)
  • 语种:中文;
  • 页:19-27
  • 页数:9
  • CN:11-1932/S
  • ISSN:1000-1522
  • 分类号:S792.153;S791.222
摘要
【目的】细根是树木吸收养分和水分的主要器官,在陆地生态系统养分循环和能量流动中发挥着重要作用。尽管人们已经理解了细根对碳和养分循环的重要性,但是对细根在不同环境条件下的响应和适应机制仍需深入探索。本文通过比较同一树种在不同环境条件下细根形态的可塑性以及不同树种细根形态上的差异,了解环境因子和外生菌根侵染对细根形态特征的影响。【方法】以东北大兴安岭和小兴安岭多年冻土区(伊春冻土退化区、南翁河冻土退化敏感区、漠河永久冻土区)的优势树种兴安落叶松和白桦为研究对象,在植物生长季节采样,挖掘法获取完整根系,测定初级发育根(1、2级根)的细根直径,比根长,比表面积,组织密度,等形态特征和外生菌根侵染率。【结果】土壤有效氮、土壤全碳以及生长季月均温是影响细根形态特征的主要因素。在伊春冻土退化区、南翁河冻土退化敏感区、漠河永久冻土区条件下,兴安落叶松细根形态差异均不显著(P> 0.05),外生菌根侵染率差异显著(P <0.05);白桦细根直径、比根长、比表面积和外生菌根侵染率差异显著(P <0.05),组织密度差异不显著(P> 0.05),白桦细根直径在南翁河冻土退化敏感区最小,而比根长和比表面积最大。兴安落叶松和白桦两树种之间细根形态特征和外生菌根侵染率存在较大差异(P <0.05)。兴安落叶松和白桦菌根侵染率与细根直径显著正相关(r=0.64,P <0.01;r=0.61,P <0.01),与其他细根形态特征相关性不显著。【结论】土壤养分和生长季月均温是影响不同冻土区兴安落叶松和白桦细根形态的主要因素,兴安落叶松主要依赖外生菌根真菌适应环境变化,而白桦则是通过调整细根直径、比根长、比表面积以及外生菌根侵染率以响应环境空间异质性,外生菌根真菌的存在是兴安落叶松和白桦的重要替代性吸收策略。
        [Objective] Fine root is the primary organ for trees to absorb nutrients and water, and plays a significant role in the nutrient cycling and energy flowing of terrestrial ecosystems. Despite our understanding of the importance of fine roots for carbon and nutrient cycling, lack of understanding of acclimation and adaptation mechanisms of fine roots under different environmental conditions is a key shortcoming in the future projection about the consequences of climate change. The purpose of this paper is to compare the plasticity of fine root morphology under different environmental conditions and the morphology of fine roots of two tree species, and to analyze the effects of environmental factors and ectomycorrhizal colonization on fine root morphology. [Method] This paper takes the dominant species of Larix gmelinii and Betula platyphylla in the permafrost regions of the Xing 'an Mountains(Yichun permafrost degraded area, Nanwenghe permafrost degraded sensitive area, Mohe permafrost area of northeastern China) as the research object, the intact root segments were sampled by excavation method in the growing season. We measured the diameter, specific root length, specific surface area, tissue density and ectomycorrhizal colonization rate of primary development roots(1 st and 2 nd root). [Result] Soil available nitrogen, soil total carbon and monthly mean temperature of growing season were the main factors affecting the morphology. The fine root morphology of Larix gmelinii differed little(P > 0.05) among the three research sites, and the ectomycorrhizal colonization rate made significant difference(P < 0.05). For Betula platyphylla, the diameter, specific root length, specific surface area and ectomycorrhizal colonization rate were significantly different(P < 0.05), but tissue density did not differ(P > 0.05). The diameter of fine root of Betula platyphylla was the smallest in the Nanwenghe permafrost degraded sensitive area, but specific root length and specific surface area were the largest; the morphological characteristics of fine roots and the colonization rate of ectomycorrhizal fungi exhibited different between two tree species; and the colonization rates of Larix gmelinii and Betula platyphylla were significantly positively correlated with fine root diameter(r = 0.64, P < 0.01; r = 0.61, P < 0.01). [Conclusion] The soil nutrient and the monthly mean temperature of the growing season are the main factors influencing the morphology of fine roots. Larix gmelinii mainly relies on ectomycorrhizal fungi to adapt to environmental changes, while Betula platyphylla is adjusted by fine root diameter, specific root length and specific surface area and ectomycorrhizal infection rate in response to environmental spatial heterogeneity and the existence of ectomycorrhizal fungi is a crucial alternative absorption strategy.
引文
[1]Borken W,Kossmann G,Matzner E.Biomass,morphology and nutrient contents of fine roots in four Norway spruce stands[J].Plant and Soil,2007,292(1-2):79-93.
    [2]Gill R A,Jackson R B.Global patterns of root turnover for terrestrial ecosystems[J].New Phytologist,2000,147(1):13-31.
    [3]倪薇,霍常富,王朋.落叶松(Larix)细根形态特征沿纬度梯度的可塑性[J].生态学杂志,2014,33(9):2322-2329.Ni W,Huo C F,Wang P.Morphological plasticity of fine root traits in Larix plantations across a latitude gradient[J].Chinese Journal of Ecology,2014,33(9):2322-2329.
    [4]Zanetti C,Vennetier M,Mériaux P,et al.Plasticity of tree root system structure in contrasting soil materials and environmental conditions[J].Plant and Soil,2015,387(1-2):21-35.
    [5]Mou P,Jones R H,Tan Z Q,et al.Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous[J].Plant and Soil,2013,364(1-2):373-384.
    [6]Ostonen I,Helmisaari H S,Borken W,et al.Fine root foraging strategies in Norway spruce forests across a European climate gradient[J].Global Change Biology,2011,17(12):3620-3632.
    [7]Helmisaari H S,Derome J,Noid P,et al.Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J].Tree Physiology,2007,27(10):1493-1504.
    [8]Adams T S,McCormack M L,Eissenstat D M.Foraging strategies in trees of different root morphology:the role of root lifespan[J].Tree Physiology,2013,33(9):940-948.
    [9]Burton A J,Pregitzer K S,Hendrick R L.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J].Oecologia,2000,125(3):389-399.
    [10]Ostonen I,Rosenvald K,Helmisaari H,et al.Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients:its role in changing environments[J/OL].Frontiers in Plant Science,2013,4(2013-09-02)[2017-06-20].https://doi.org/10.3389/fpls.2013.00335.
    [11]Lepp?lammi-Kujansuu J,Ostonen I,Str?mgren M,et al.Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production[J].Plant and Soil,2013,366(1-2):287-303.
    [12]刘金梁,梅莉,谷加存,等.内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J].生态学杂志,2009,28(1):1-6.Liu J L,Mei L,Gu J C,et al.Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii:a study with in-growth core approach[J].Chinese Journal of Ecology,2009,28(1):1-6.
    [13]Ostonen I,Püttseppü,Biel C,et al.Specific root length as an indicator of environmental change[J].Plant Biosystems,2007,141(3):426-442.
    [14]Eissenstat D M,Kucharski J M,Zadworny M,et al.Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest[J].New Phytologist,2015,208(1):114-124.
    [15]Ostonen I,L?hmus K,Helmisaari H S,et al.Fine root morphological adaptations in Scots pine,Norway spruce and silver birch along a latitudinal gradient in boreal forests[J].Tree Physiology,2007,27(11):1627-1634.
    [16]Comas L H,Eissenstat D M.Patterns in root trait variation among25 co-existing North American forest species[J].New Phytologist,2009,182(4):919-928.
    [17]Kalliokoski T,Pennanen T,Nygren P,et al.Belowground interspecific competition in mixed boreal forests:fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients[J].Plant and Soil,2010,330(1-2):73-89.
    [18]郭良栋,田春杰.菌根真菌的碳氮循环功能研究进展[J].微生物学通报,2013,40(1):158-171.Guo L D,Tian C J.Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen[J].Microbiology China,2013,40(1):158-171.
    [19]Nilsson L O,Giesler R,B??th E,et al.Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients[J].New Phytologist,2005,165(2):613-622.
    [20]Bahr A,Ellstr?m M,Akselsson C,et al.Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage[J].Soil Biology and Biochemistry,2013,59:38-48.
    [21]何瑞霞,金会军,吕兰芝,等.东北北部冻土退化与寒区生态环境变化[J].冰川冻土,2009,31(3):525-531.He R X,Jin H J,LüL Z,et al.Recent changes of permafrost and cold regions environments in the northern part of northeastern China[J].Journal of Glaciology and Geocryology,2009,31(3):525-531.
    [22]金会军,李述训,王绍令,等.气候变化对中国多年冻土和寒区环境的影响[J].地理学报,2000,55(2):161-173.Jin H J,Li S X,Wang S L,et al.Impacts of climatic change on permafrost and cold regions environments in China[J].Acta Geographica Sinica,2000,55(2):161-173.
    [23]赵一宇,杜瀹聪.大小兴安岭林区森林沼泽成因、类型及其分布规律的研究[J].东北林学院学报,1980(1):27-35.Zhao Y Y,Du Y C.Research on contributing factor types and the rule of distribution of forestry Swamp in the Large and Lesser Xing’an Mountains[J].Journal of North-Eastern Forestry Institute,1980(1):27-35.
    [24]韩士杰,王庆贵.北方森林生态系统对全球气候变化的响应研究进展[J].北京林业大学学报,2016,38(4):1-20.Han S J,Wang Q G.Response of boreal forest ecosystem to global climate change:a review[J].Journal of Beijing Forestry University,2016,38(4):1-20.
    [25]Weemstra M,Sterck F J,Visser E J W,et al.Fine-root trait plasticity of beech(Fagus sylvatica)and spruce(Picea abies)forests on two contrasting soils[J].Plant and Soil,2017,415(1-2):175-188.
    [26]王文娜,王燕,王韶仲,等.氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J].应用生态学报,2016,27(4):1294-1302.Wang W N,Wang Y,Wang S Z,et al.Effects of elevated Navailability on anatomy,morphology and mycorrhizal colonization of fine roots[J].Chinese Journal of Applied Ecology,2016,27(4):1294-1302.
    [27]闫国永,王晓春,邢亚娟,等.兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J].北京林业大学学报,2016,38(4):36-43.Yan G Y,Wang X C,Xing Y J,et al.Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J].Journal of Beijing Forestry University,2016,38(4):36-43.
    [28]Bauhus J,Khanna P K,Menden N.Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J].Canadian Journal of Forest Research,2000,30(12):1886-1894.
    [29]Eissenstat D M.On the relationship between specific root length and the rate of root proliferation-a field-study using citrus rootstocks[J].New Phytologist,1991,118(1):63-68.
    [30]L?hmus K,Truu M,Truu J,et al.Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest,abandoned agricultural,and oil-shale mining areas[J].Plant and Soil,2006,283(1-2):1-10.
    [31]Espeleta J F,Donovan L A.Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species[J].Functional Ecology,2002,16(1):113-121.
    [32]Meier I C,Leuschner C.Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech[J].Tree Physiology,2008,28(2):297-309.
    [33]Holdaway R J,Richardson S J,Dickie I A,et al.Species-and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest[J].Journal of Ecology,2011,99(4):954-963.
    [34]Prieto I,Roumet C,Cardinael R,et al.Root functional parameters along a land-use gradient:evidence of a community-level economics spectrum[J].Journal of Ecology,2015,103(2):361-373.
    [35]Reich P B.The world-wide‘fast-slow’plant economics spectrum:a traits manifesto[J].Journal of Ecology,2014,102(2):275-301.
    [36]Ostonen I,L?hmus K,Lasn R.The role of soil conditions in fine root ecomorphology in Norway spruce(Picea abies(L.)Karst)[J].Plant and Soil,1999,208(2):283-292.
    [37]刘延滨,牟溥.植物养分捕获的菌根塑性:外生菌根的塑性[J].植物生态学报,2010,34(12):1472-1484.Liu Y B,Mou P.Mycorrhizal plasticity of plant nutrient foraging:a review of ectomycorrhizal plasticity[J].Chinese Journal of Plant Ecology,2010,34(12):1472-1484.
    [38]Allen M F.Mycorrhizal fungi:highways for water and nutrients in arid soils[J].Vadose Zone Journal,2007,6(2):291-297.
    [39]Wallander H.A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply[J].Plant and Soil,1995,168-169(1):243-248.
    [40]Pierret A,Doussan C,Capowiez Y,et al.Root functional architecture:a framework for modeling the interplay between roots and soil[J].Vadose Zone Journal,2009,6(2):269-281.
    [41]娄鑫,谷岩,张军辉,等.冬季积雪与冻融对土壤团聚体稳定性的影响[J].北京林业大学学报,2016,38(4):63-70.Lou X,Gu Y,Zhang J H,et al.Effects of snow cover and freezethaw cycles on stability of surface soil aggregates in forest[J].Journal of Beijing Forestry University,2016,38(4):63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700