用户名: 密码: 验证码:
水稻各器官镉阻控功能的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advance on the functions of rice organs in cadmium inhibition:A review
  • 作者:刘仲齐 ; 张长波 ; 黄永春
  • 英文作者:LIU Zhong-qi;ZHANG Chang-bo;HUANG Yong-chun;Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs;
  • 关键词:水稻 ; ; 营养器官 ; 阻控机理 ; 分布特征
  • 英文关键词:rice;;cadmium;;vegetative organs;;inhibition mechanism;;distribution characteristics
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:农业农村部产地环境质量重点实验室农业农村部环境保护科研监测所;
  • 出版日期:2019-04-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划项目(2017YFD0801100);; 中国农科院科技创新工程项目(CAAS-XTCX2016018)~~
  • 语种:中文;
  • 页:7-13
  • 页数:7
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:S511;X53
摘要
土壤镉(Cd)污染是引起稻米镉污染的重要因素,但二者之间并非简单的线性关系。本文围绕植物根系、茎叶、穗轴和稻谷对Cd的拦截作用及其调控机理进行综述,表明:在长期的自然进化过程中,水稻的根茎叶组织和穗轴、颖壳、果皮、种皮等组织具备了识别必需元素和有害元素的特殊功能,能够把大量的Cd固定在营养体的细胞壁中,或封存在液泡中。经过各类细胞的层层拦截,只有极少数的Cd汇聚到穗轴中,穗轴中的Cd浓度与稻米中的Cd含量高度线性相关。籽粒灌浆成熟后,Cd主要分布在颖壳和富含蛋白质的糊粉层与胚中,淀粉中的Cd含量最低。水稻根系和节是Cd含量最高的营养器官。通过栽培措施和遗传调控,发掘和利用营养器官对Cd的拦截潜力和过滤功能,有助于降低稻米Cd污染风险。
        Cadmium(Cd)contamination in farmlands is an important factor causing rice cadmium pollution, but there is not a simple linear relationship between them. During the long process of natural evolution, rice organs including root, leaf, spike, glume, pericarp, seed coat and others have evolved the special function to discriminate essential elements from harmful ones. A large amount of cadmium is fixed in the cell walls of vegetative organs or compartmentalized in vacuoles. After many interceptions from miscellaneous cells, only a small amount of cadmium flows into the spike rachises. Cadmium concentration in rachises is positively and linearly correlated with cadmium content in rice grains. After grain filling and maturation, cadmium is mainly distributed in glume, aleurone layer and embryo with high protein. Starch has the lowest content of cadmium in grains. Rice roots and nodes have much higher cadmium concentration than other organs.There is a great potential in reducing the risk of cadmium pollution in rice grains by exploring the interception and filtration function of vegetative organs to cadmium through cultivation measures and genetic manipulation.
引文
[1]赵晓军,陆泗进,许人骥,等.土壤重金属镉标准值差异比较研究与建议[J].环境科学,2014,35(4):1491-1497.ZHAO Xiao-jun,LU Si-jin,XU Ren-ji,et al. Soil heavy metal cadmium standard limit and range of background value research[J]. Environmental Science, 2014,35(4):1491-1497.
    [2]居学海,张长波,宋正国,等.水稻籽粒发育过程中各器官镉积累量的变化及其与基因型和土壤镉水平的关系[J].植物生理学报, 2014,50(5):634-640.JU Xue-hai, ZHANG Chang-bo, SONG Zheng-guo, et al. Changes in cadmium accumulation in rice organs during grain development and their relationship with genotype and cadmium levels in soil[J]. Plant Physiol J, 2014, 50(5):634-640.
    [3]易亚科,周志波,陈光辉.土壤酸碱度对水稻生长及稻米镉含量的影响[J].农业环境科学学报, 2017, 36(3):428-436.YI Ya-ke, ZHOU Zhi-bo, CHEN Guang-hui. Effects of soil pH on growth and grain cadmium content in rice[J]. Journal of Agro-Environment Science, 2017, 36(3):428-436.
    [4] Liu Y, Zhang C, ZhaoY, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil[J]. Sci of the Total Environ, 2017, 579:1282-1288.
    [5] Du Y, Hu X F, Wu X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, Central South China[J]. Environ Monit Assess, 2013, 185(12):9843-9856.
    [6]彭华,戴金鹏,纪雄辉,等.稻田土壤与稻米中的镉含量关系初探[J].湖南农业科学, 2013(7):68-72.PENG Hua, DAI Jin-peng, JI Xiong-hui, et al. Correlation between cadmium content in paddy soil and in rice[J]. Hunan Agricultural Sciences, 2013(7):68-72.
    [7] Shimojima E, Tamagawa I, Horiuchi M, et al. Observation of water and solute movement in a saline, bare soil, groundwater seepage area, Western Australia. Part 2. Annual water and solute balances[J]. Soil Research, 2016, 54(1):78-93.
    [8] Yang F, An F, Ma H, et al. Variations on soil salinity and sodicity and its driving factors analysis under microtopography in different hydrological conditions[J]. Water, 2016, 8:227. doi:10.3390/w8060227.
    [9] Sarwar N, Saifullah, Malhi S S, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants[J]. J Sci Food Agric, 2010, 90(6):925-937.
    [10] Shahid M, Shukla A K, Bhattacharyya P, et al. Micronutrients(Fe,Mn, Zn and Cu)balance under long-term application of fertilizer and manure in a tropical rice-rice system[J]. J Soils Sediments, 2016, 16(3):737-747.
    [11] Liu J G, Qian M, Cai G L, et al. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain[J]. Journal of Hazardous Materials, 2007, 143(1/2):443-447.
    [12] Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice:perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5:5.
    [13] Zhang H, Zhang X, Li T, et al. Variation of cadmium uptake, translocation among rice lines and detecting for potential cadmium-safe cultivars[J]. Environ Earth Sci, 2014, 71(1):277-286.
    [14] Fujimaki S, Suzui N, Ishioka N S, et al. Tracing cadmium from culture to spikelet:Noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiol, 2010,152(4):1796-1806.
    [15] Kobayashi N I, Tanoi K, Hirose A, et al. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging[J]. J Exp Bot, 2013, 64(2):507-517.
    [16]韩立娜,居学海,张长波,等.水稻镉离子流速的基因型差异及其与镉积累量的关系研究[J].农业环境科学学报,2014, 33(1):37-42.HAN Li-na, JU Xue-hai, ZHANG Chang-bo, et al. Genotypic variation of Cd2+flux and its relationship with Cd accumulation in rice plant[J]. Journal of Agro-Environment Science, 2014, 33(1):37-42.
    [17]刘侯俊,梁吉哲,韩晓日,等.东北地区不同水稻品种对Cd的累积特性研究[J].农业环境科学学报,2011,30(2):220-227.LIU Hou-jun, LIANG Ji-zhe, HAN Xiao-ri, et al. Accumulation and distribution of cadmium in different rice cultivars of northeastern China[J]. Journal of Agro-Environment Science, 2011, 30(2):220-227.
    [18] Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5):2155-2167.
    [19] Ueno D, Koyama E, Yamaji N, et al. Physiological,genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan[J]. J Exp Bot, 2011, 62(7):2265-2272.
    [20] Chen R, Zhang C, Zhao Y, et al. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants[J]. Environ Sci Pollut Res, 2018, 25(3):2361-2368.
    [21]单天宇,刘秋辛,阎秀兰,等.镉砷复合污染条件下镉低吸收水稻品种对镉和砷的吸收和累积特征[J].农业环境科学学报, 2017, 36(10):1938-1945.SHAN Tian-yu, LIU Qiu-xin, YAN Xiu-lan, et al. Cd and As absorption and transport characteristics of rice in a paddy field co-contaminated by Cd and As[J]. Journal of Agro-Environmental Science, 2017,36(10):1938-1945.
    [22] Hawes M C, McLain J, Ramirez-Andreotta M, et al. Extracellular trapping of soil contaminants by root border cells:New insights into plant defense[J]. Agronomy, 2016, 6:5. doi:10.3390/agronomy601005
    [23] Cai M Z, Zhang S N, Xing C H, et al. Interaction between iron plaque and root border cells ameliorates aluminum toxicity of Oryza sativa differing in aluminum tolerance[J]. Plant Soil, 2012, 353(1/2):155-167.
    [24]王亚男,姜华,王煜,等.不同状态绿豆根边缘细胞对Cd2+的响应[J].土壤学报,2013, 50(1):165-170.WANG Ya-nan, JIANG Hua, WANG Yu, et al.Response of mung bean root border cells to cadmium in relation to their status[J]. Acta Pedologica Sinica, 2013, 50(1):165-170.
    [25]郭伟,林咸永,程旺大.不同地区土壤中分蘖期水稻根表铁氧化物的形成及其对砷吸收的影响[J].环境科学,2010,31(2):496-502.GUO Wei,LIN Xian-yong,CHENG Wang-da,et al. Effect of iron plaque formation of root surface on As uptake by rice seedlings grown on different types of soils[J]. Environmental Science,2010,31(2):496-502.
    [26]傅友强,杨旭健,吴道铭,等.磷素对水稻根表红棕色铁膜的影响及营养效应[J].中国农业科学,2014,47(6):1072-1085.FU You-qiang,YANG Xu-jian,WU Dao-ming,et al.Effect of phosphorus on reddish brown iron plaque on root surface of rice seedlings and their nutritional effects[J]. Scientia Agricultura Sinica,2014,47(6):1072-1085.
    [27] Atulba S L, Gutierrez J, Kim G W, et al.Evaluation of rice root oxidizing potential using digital image analysis[J]. Journal of the Korean Society for Applied Biological Chemistry,2015,58(3):463-471.
    [28] Zhou H, Zeng M, Zhou X, et al. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice(Oryza sativa L.)cultivars[J]. Plant and Soil, 2015, 386(1):317-329.
    [29] Pi N, Tam N F, Wong M H. Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots[J]. Environmental Pollution, 2010, 158(2):381-387.
    [30]刘清泉,陈亚华,沈振国,等.细胞壁在植物重金属耐性中的作用.植物生理学报, 2014, 50(5):605-611.LIU Qing-quan, CHEN Ya-hua, SHEN Zhen-guo, et al. Roles of cell wall in plant heavy metal tolerance[J]. Plant Physiology Journal, 2014,50(5):605-611.
    [31] Krzes?owska M. The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy[J]. Acta Physiol Plant, 2011, 33(1):35-51.
    [32]焦欣田,薛卫杰,赵艳玲,等.硅锌互作对水稻幼苗镉吸收转运特性的影响[J].农业环境科学学报, 2018, 37(11):2491-2497.JIAO Xin–tian, XUE Wei–jie, ZHAO Yan–ling, et al. Effects of silicon and zinc interaction on the uptake of cadmium in rice seedlings[J]. Journal of Agro-Environment Science, 2018, 37(11):2491-2497.
    [33] Nishizona H, Zchikawa H, Suzuki S, et al. The role of the root cell wall in heavy metal tolerance of Athyrium yokosense[J]. Plant Soil,1987, 101(1):15-20.
    [34]赵艳玲,张长波,刘仲齐.植物根系细胞抑制镉转运过程的研究进展[J].农业资源与环境学报, 2016, 33(3):209-213.ZHAO Yan-ling, ZHANG Chang-bo, LIU Zhong-qi. Inhibiting cadmium transport process in root cells of plants:A review[J]. Journal of Agricultural Resources and Environment, 2016, 33(3):209-213.
    [35] Haynes R J. Ion exchange properties of roots and ionic interactions within the root apoplasm:Their role in ion accumulation by plants[J].Bot Rev, 1980, 46(1):75-99.
    [36]Cheng S, Hua Yu, Meng Hu, et al. Miscanthus accessions distinctively accumulate cadmium for largely enhanced biomass enzymatic saccharification by increasing hemicelluloses and pectin and reducing cellulose CrI and DP[J]. Bioresource Technology, 2018, 263:67-74.
    [37] Xiong J, An L, Lu H, et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicelluloses contents in root cell wall[J]. Planta, 2009, 230(4):755-765.
    [38]黄文方,陈晓阳,邢承华,等.磷对水稻耐铝性及根尖细胞壁组分的影响[J].中国水稻科学,2013,27(2):161-167.HUANG Wen-fang,CHEN Xiao-yang,XING Cheng-hua,et al.Effects of phosphorous on aluminum tolerance and cell wall polysaccharide components in rice root tips[J]. Chinese Journal of Rice Science,2013, 27(2):161-167.
    [39] Zhu X F, Lei G J, Jiang T, et al. Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana[J]. Planta,2012,236(4):989-997.
    [40]李桃,李军,韩颖,等.磷对水稻镉的亚细胞分布及化学形态的影响[J].农业环境科学学报,2017,36(9):1712-1718.LI Tao, LI Jun, HAN Ying, et al. Effects of phosphorus on subcellular distribution and chemical speciation of cadmium in rice[J]. Journal of Agro-Environment Science, 2017, 36(9):1712-1718.
    [41] Hayakawa N, Tomioka R, Takenaka C. Effects of calcium on cadmium uptake and transport in the tree varieties Gamblea innovans[J]. Soil Science and Plant Nutrition, 2011, 57:691-695.
    [42] Ma J, Cai H, He C, et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice(Oryza sativa)cells[J]. New Phytol,2015, 206:1063-1074.
    [43] Ma J, Zhang X, Wang L. Synergistic effects between[Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice(Oryza sativa)cells[J]. Planta, 2017, 245:965-976.
    [44]金枫,王翠,林海建,等.植物重金属转运蛋白研究进展[J].应用生态学报,2010, 21(7):1875-1882.JIN Feng, WANG Cui, LIN Hai-jian, et al. Heavy metal transport proteins in plants:A review[J]. Chinese Journal of Applied Ecology, 2010,21(7):1875-1882.
    [45] Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. J Exp Bot, 2011,62(14):4843-4850.
    [46]刘仲齐,张长波.重金属调控非选择性阳离子通道生理功能的研究进展[J].农业资源与环境学报, 2017, 34(1):1-5.LIU Zhong-qi, ZHANG Chang-bo. Advance in regulation of heavy metals on nonselective cation channels:A review[J]. Journal of Agricultural Resources and Environment, 2017, 34(1):1-5.
    [47]张参俊,张长波,王景安,等.非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响[J].农业环境科学学报,2015,34(6):1028-1033.ZHANG Shen-jun, ZHANG Chang-bo, WANG Jing-an, et al. Effects of nonselective cation channels on Cd accumulation and transfer characteristics in rice seedling[J]. Journal of Agro-Environmental Science,2015, 34(6):1028-1033.
    [48] Zhou Y, Xia X M, Lingle C J. Cadmium–cysteine coordination in the BK inner pore region and its structural and functional implications[J].Proc Natl Acad Sci USA, 2015,112(16):5237-5242.
    [49] Nocito F F, Lancilli C, Dendena B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation[J]. Plant Cell and Environment, 2011, 34(6):994-1008.
    [50] Gao L, Chang J, Chen R, et al. Comparison on cellular mechanisms of iron and cadmium accumulation in rice:Prospects for cultivating Ferich but Cd-free rice[J]. Rice, 2016, 9:1-12.
    [51]韩潇潇,任兴华,王培培,等.叶面喷施锌离子对水稻各器官镉积累特性的影响[J].农业环境科学学报, 2019, 38(接受)HAN Xiao-xiao, REN Xing-hua, WANG Pei-pei, et al. Effects of foliar application with zinc on the characteristics of cadmium accumulation in organs of rice plants[J]. Journal of Agro-Environmental Science, 2019, 38(in press).
    [52] Uraguchi S, Kamiya T, Sakamoto T, et al. Low-affinity cation transporter(OsLCT1)regulates cadmium transport into rice grains[J]. Proc Natl Acad Sci USA, 2011, 108(152):20959-20964.
    [53]张亮亮,樊小林,张立丹,等.碱性肥料对稻田土壤和稻米镉含量的影响[J].应用生态学报,2016, 27(3):891-896.ZHANG Liang-liang, FAN Xiao-lin, ZHANG Li-dan, et al. Effects of alkaline fertilizer on cadmium content in rice and paddy soil[J]. Chinese Journal of Applied Ecology, 2016, 27(3):891-896.
    [54]文志琦,赵艳玲,崔冠男,等.水稻营养器官镉积累特性对稻米镉含量的影响[J].植物生理学报, 2015, 51(8):1280-1286.WEN Zhi-qi, ZHAO Yan-ling,CUI Guan-nan,et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015, 51(8):1280-1286.
    [55]王龙,杨益新,高子平,等.水稻幼苗镉积累特征和离体叶片耐镉性的基因型差异[J].生态毒理学报, 2016,11(6):187-196.WANG Long, YANG Yi-xin, GAO Zi-ping, et al. Genotypic difference of cadmium accumulation characteristics and cadmium tolerance in detached leaves of rice(Oryza sativa L.)seedlings[J]. Asian Journal of Ecotoxicology, 2016, 11(6):187-196.
    [56]贺前锋,李鹏祥,易凤姣,等.叶面喷施硒肥对水稻植株中镉、硒含量分布的影响[J].湖南农业科学, 2016(1):37-39.HE Qian-feng, LI Peng-xiang, YI Feng-jiao, et al. Effects of selenium fertilizer foliage application on distribution of cadmium and selenium in rice[J]. Hunan Agricultural Sciences, 2016(1):37-39.
    [57]张烁,陆仲烟,唐琦,等.水稻叶面调理剂的降Cd效果及其对营养元素转运的影响[J].农业环境科学学报, 2018, 37(11):2507-2513.ZHANG Shuo, LU Zhong-yan, TANG Qi, et al. Effects of foliar modulators on cadmium accumulation and transport of nutrient elements in rice[J]. Journal of Agro-Environment Science, 2018, 37(11):2507-2513.
    [58]张标金,罗林广,魏益华,等.不同基因型水稻镉积累动态差异分析[J].中国农学通报, 2015, 31(9):25-30.ZHANG Biao-jin, LUO Lin-guang, WEI Yi-hua, et al. Analysis of cadmium accumulation dynamics in rice with distinct genotypes[J].Chinese Agricultural Science Bulletin, 2015, 31(9):25-30.
    [59]王亚军,潘传荣,钟国才,等.稻谷中镉元素残留分布特征分析[J].粮食与饲料工业,2010,10:56-59.WANG Ya-jun, PAN Chuan-rong, ZHONG Guo-cai, et al. Analysis on distribution characteristics of cadmium residues in paddy[J]. Cereal&Feed Industry, 2010, 10:56-59.
    [60] Wei S, Guo B, Feng L, et al. Cadmium distribution and characteristics of cadmium-binding proteins in rice(Oryza sativa L.)kernel[J]. Food Science and Technology Research, 2017, 23(5):661-668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700