用户名: 密码: 验证码:
倒伏胁迫下玉米抽雄期叶面积密度光谱诊断
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectral Diagnosis of Leaf Area Density of Maize at Heading Stage Under Lodging Stress
  • 作者:周龙飞 ; 顾晓鹤 ; 成枢 ; 杨贵军 ; 孙乾 ; 束美艳
  • 英文作者:ZHOU LongFei;GU XiaoHe;CHENG Shu;YANG GuiJun;SUN Qian;SHU MeiYan;College of Geomatics,Shandong University of Science and Technology;Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture,Beijing Research Center for Information Technology in Agriculture;National Engineering Research Center for Information Technology in Agriculture;Beijing Engineering Research Center for Agriculture Internet of Things;
  • 关键词:抽雄期 ; 倒伏胁迫 ; 连续小波变换 ; LAD ; 玉米 ; 高光谱
  • 英文关键词:heading stage;;lodging stress;;continuous wavelet transform;;LAD;;maize;;hyperspectral
  • 中文刊名:中国农业科学
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:山东科技大学测绘科学与工程学院;农业部农业遥感机理与定量遥感重点实验室/北京农业信息技术研究中心;国家农业信息化工程技术研究中心;北京市农业物联网工程技术研究中心;
  • 出版日期:2019-05-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(41571323);; 北京市自然科学基金(6172011);; 院创新能力建设专项(KJCX20170705)
  • 语种:中文;
  • 页:49-59
  • 页数:11
  • CN:11-1328/S
  • ISSN:0578-1752
  • 分类号:S513
摘要
【目的】叶面积密度(leaf area density,LAD)反映作物在垂直方向上体积内叶面积总量的差异,体现作物冠层内叶面积随着高度变化的分布状况。本文旨在探索玉米叶面积密度对于倒伏胁迫强度的表征能力及其光谱响应规律。【方法】以抽雄期倒伏夏玉米为研究对象,获取倒伏后玉米多期LAD及冠层光谱数据,对倒伏玉米冠层光谱进行一阶微分和小波变换处理,根据LAD与冠层光谱一阶微分及小波分解系数的相关性分析,筛选LAD敏感波段和最佳小波分解尺度,采用偏最小二乘法构建倒伏玉米LAD光谱诊断模型,并利用实测样本验证模型精度。【结果】玉米LAD随着倒伏胁迫程度的增强而增大,LAD可有效表征玉米倒伏胁迫强度及其自身恢复能力;玉米倒伏后冠层结构发生较大变化,倒伏玉米冠层光谱反射率较正常玉米整体增高,近红外波段的增幅相比可见光波段更高,倒伏强度越强则光谱反射率越高;LAD敏感波段主要分布在蓝光波段354—442、472—495 nm和红光波段649—829 nm以及近红外波段903—1 195 nm和1 564—1 581 nm;同一阶微分处理相比,基于连续小波变换的玉米倒伏LAD诊断模型的验证R~2提高6.08%—9.11%,RMSE降低23.08%—31.63%;小波分解尺度对LAD诊断精度有一定的影响,中低尺度模型精度优于高尺度模型,其中第5尺度构建的模型对LAD的拟合效果最优(R~2=0.898,RMSE=1.016)。【结论】利用连续小波变换技术对玉米冠层高光谱解析,可有效诊断倒伏胁迫下的玉米叶面积密度,可以为玉米倒伏胁迫灾情遥感监测提供必要的先验知识。
        【Objective】 Leaf area density(LAD) reflects the difference of the total leaf area per volume in vertical direction and the distribution of the leaf area in the canopy with the change of height. The purpose of this study was to explore the characterization ability of maize leaf area density and its spectral response to lodging stress intensity. 【Method】 Taking lodging summer maize at heading stage as the research object, the multi-stage of LAD and canopy spectral data after lodging were obtained.The first-order differential and wavelet transform of the canopy spectrum of lodging maize were processed. Based on the correlation analysis between LAD, the first-order differential and wavelet decomposition coefficients of canopy spectrum, the sensitive bands of LAD and the optimal wavelet decomposition scale were screened. Partial least squares(PLS) method was used to construct the LAD spectral diagnosis model of lodging maize, and the accuracy of the model was verified by the measured samples.【Result】The LAD of maize increased with the increase of lodging stress, and LAD could effectively characterize the intensity of lodging stress and recovery ability of maize. After lodging, the canopy structure of maize changed greatly. The spectral reflectance of lodging maize canopy was higher than that of normal maize. The increase of near infrared band was higher than that of visible band. The stronger lodging intensity was, the higher spectral reflectance was. The sensitive bands of LAD were mainly distributed in the blue band354-442 nm and 472-495 nm, the red band 649-829 nm, and the near infrared band 903-1 195 nm and 1 564-1 581 nm. Comparing with the first-order differential, the validation R~2 of LAD diagnostic model of maize lodging based on continuous wavelet transform increased by 6.08%-9.11%, and RMSE decreased by 23.08%-31.63%. The scale of wavelet decomposition had a certain influence on the diagnostic accuracy of LAD. The accuracy of the low-and medium-scale model was better than that of the high-scale model,and the model constructed by the fifth scale had the best fitting effect on LAD(R~2=0.898, RMSE=1.016). 【Conclusion】 The application of continuous wavelet transform to analyze the maize canopy hyperspectral could effectively diagnose maize leaf area density under lodging stress. It could provide necessary prior knowledge for remote sensing monitoring of maize lodging stress disaster.
引文
[1]刘战东,肖俊夫,南纪琴,冯跃华.倒伏对夏玉米叶面积、产量及其构成因素的影响.中国农学通报,2010,26(18):107-110.LIU Z D,XIAO J F,NAN J Q,FENG Y H.Effect of different levels lodging on leaf area index,yield and its components of summer maize.Chinese Agricultural Science Bulletin,2010,26(18):107-110.(in Chinese)
    [2]程富丽,杜雄,刘梦星,靳小利,崔彦宏.玉米倒伏及其对产量的影响.玉米科学,2011,19(1):105-108.CHENG F L,DU X,LIU M X,JIN X L,CUI Y H.Lodging of summer maize and the effects on grain yield.Journal of Maize Sciences,2011,19(1):105-108.(in Chinese)
    [3]ELMORE R W,FERGUSON R B.Mid-season stalk breakage in corn:Hybrid and environmental factors.Journal of Production Agriculture,1999,12(2):293-299.
    [4]勾玲,赵明,黄建军,张宾,李涛,孙锐.玉米茎秆弯曲性能与抗倒能力的研究.作物学报,2008,34(4):653-661.GOU L,ZHAO M,HUANG J J,ZHANG B,LI T,SUN Y.Bending mechanical properties of stalk and lodging-resistance of maize.Acta Agronomica Sinica,2008,34(4):653-661.(in Chinese)
    [5]黄璐,乔江方,刘京宝,夏来坤,朱卫红,李川,周庆伟.夏玉米不同密植群体抗倒性及机收指标探讨.华北农学报,2015,30(2):198-201.HUANG L,QIAO J F,LIU J B,XIA L K,ZHU W H,LI C,ZHOU QW.Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density.Acta Agriculturae Boreali-Sinica,2015,30(2):198-201.(in Chinese)
    [6]曹庆军,曹铁华,杨粉团,LAMINE D,李刚,王立春.灌浆期风灾倒伏对玉米籽粒灌浆特性及品质的影响.中国生态农业学报,2013,21(9):1107-1113.CAO Q J,CAO T H,YANG F T,LAMINE D,LI G,WANG L C.Effect of wind damage on grain-filling characteristics,grain quality and yield of spring maize(Zea mays L.).Chinese Journal of Eco-Agriculture,2013,21(9):1107-1113.(in Chinese)
    [7]陈碧梅,劳赏业.玉米倒伏类型及抗倒伏措施.农业灾害研究,2015,5(4):5-6.CHEN B M,LAO S Y.Lodging types and lodging-resistant measures of corn.Journal of Agricultural Catastrophology,2015,5(4):5-6.(in Chinese)
    [8]李树岩,王宇翔,胡程达,闫瑛.抽雄期前后大风倒伏对夏玉米生长及产量的影响.应用生态学报,2015,26(8):2405-2413.LI S Y,WANG X Y,HU C D,YAN Y.Effects of strong wind lodging at pre-and post-tasseling stages on growth and yield of summer maize.Chinese Journal of Applied Ecology,2015,26(8):2405-2413.(in Chinese)
    [9]解飞,齐雁冰,常庆瑞.关中地区夏玉米抽穗期叶绿素含量的高光谱估算.水土保持通报,2016,36(2):176-180.XIE F,QI Y B,CHANG Q R.Hyperspectral estimation of canopy chlorophyll content in summer corn in Guanzhong area.Bulletin of Soil and Water Conservation,2016,36(2):176-180.(in Chinese)
    [10]井淑香,郑以宏,袁永胜,黄迎光,梁凤玲.不同生育时期倒伏对夏玉米生育性状和产量的影响.山东农业科学,2018,50(2):61-63,67.JING S X,ZHENG Y H,YUAN Y S,HUANG Y G,LIANG F L.Effects of lodging at different growing stages on growing characters and grain yield of summer maize.Shandong Agricultural Sciences,2018,50(2):61-63,67.(in Chinese)
    [11]李文莹.密度对玉米倒伏相关性状及产量的影响[D].长春:吉林大学,2018.LI W Y.Effect of planting density on traits related to lodging and yield of maize[D].Changchun:Jilin University,2018.(in Chinese)
    [12]陈艳君,吴科斌,张俊雄,农克俭,李建生,李伟.玉米秸秆力学参数与抗倒伏性能关系研究.农业机械学报,2011,42(6):89-92.CHEN Y J,WU K B,ZHANG J X,NONG K J,LI J S,LI W.Relationship between corn lodging resistance and mechanical parameters.Transactions of the Chinese Society for Agricultural Machinery,2011,42(6):89-92.(in Chinese)
    [13]MI C,ZHANG X,LI S,YANG J,ZHU D,YANG Y.Assessment of environment lodging stress for maize using fuzzy synthetic evaluation.Math Comput Model,2011,54(3):1053-1060.
    [14]XUE J,GOU L,ZHAO Y,YAO M,TIAN J,ZHANG W.Effects of light intensity within the canopy on maize lodging.Field Crop Research,2016,188:133-141.
    [15]杨扬,杨建宇,李绍明,张晓东,朱德海,刘哲,米春桥,肖开能.玉米倒伏胁迫影响因子的空间回归分析.农业工程学报,2011,27(6):244-249.YANG Y,YANG J Y,LI S M,ZHANG X D,ZHU D H,LIU Z,MIC Q,XIAO K N.Spatial regression analysis on influence factors of maize lodging stress.Transactions of the Chinese Society of Agricultural Engineering,2011,27(6):244-249.(in Chinese)
    [16]席吉龙,张建诚,姚景珍,郝佳丽,杨娜,席凯鹏.夏玉米灌浆期倒伏对产量的影响模拟研究.山西农业科学,2015,43(6):705-708.XI J L,ZHANG J C,YAO J Z,HAO J L,YANG N,XI K P.Simulation study on the influence of filling summer corn lodging on yield.Journal of Shanxi Agricultural Sciences,2015,43(6):705-708.(in Chinese)
    [17]薛军,王克如,谢瑞芝,勾玲,张旺峰,明博,侯鹏,李少昆.玉米生长后期倒伏研究进展.中国农业科学,2015,43(6):705-708.XUE J,WANG K R,XIE R Z,GOU L,ZHANG W F,MING B,HOU P,LI S K.Research progress of maize lodging during late stage.Scientia Agricultura Sinica,2015,43(6):705-708.(in Chinese)
    [18]CHU T,STAREK M,BREWER M,MURRAY S,PRUTER L.Assessing lodging severity over an experimental maize(Zea mays L.)field using UAS images.Remote Sensing,2017,9:923.
    [19]HAN L,YANG G J,FENG H K,ZHOU C Q,YANG H,XU B,LI ZH,YANG X D.Quantitative identification of maize lodging-causing feature factors using unmanned aerial vehicle images and a nomogram computation.Remote Sensing,2018,10:1528.
    [20]王猛,张杰,梁守真,侯学会,姚慧敏,隋学艳,王勇.玉米倒伏后冠层光谱变化特征分析.安徽农业科学,2014,42(31):11187-11188,11201.WANG M,ZHANG J,LIANG S Z,HOU X H,YAO H M,SUI X Y,WANG Y.Character analysis of the canopy spectral changes after corn lodging.Journal of Anhui Agricultural Sciences,2014,42(31):11187-11188,11201.(in Chinese)
    [21]ZHANG J C,GU X H,WANG J H,HUANG W J,DONG Y Y,LUOJ H,YUAN L,LI Y F.Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances.NJAS-Wageningen Journal of Life Science,2012,10(1/2):580-585.
    [22]李宗南,陈仲新,任国业,李章成,王昕.基于Worldview-2影像的玉米倒伏面积估算.农业工程学报,2016,32(2):1-5.LI Z N,CHEN Z X,REN G Y,LI Z C,WANG X.Estimation of maize lodging area based on Worldview-2 image.Transactions of the Chinese Society of Agricultura Engineering,2016,32(2):1-5.(in Chinese)
    [23]王立志,顾晓鹤,胡圣武,杨贵军,王磊,范友波,王艳杰.基于多时相HJ-1B CCD影像的玉米倒伏灾情遥感监测.中国农业科学,2016,49(21):4120-4129.WANG L Z,GU X H,HU S W,YANG G J,WANG L,FAN Y B,WANG Y J.Remote sensing monitoring of maize lodging disaster with multi-temporal HJ-1B CCD image.Scientia Agricultura Sinica,2016,49(21):4120-4129.(in Chinese)
    [24]王延仓,张兰,王欢,勾玲,顾晓鹤,庄连英,段龙方,李佳俊,林靖.连续小波变换定量反演土壤有机质含量.光谱学与光谱分析,2018,38(11):3521-3527.WANG Y C,ZHANG L,WANG H,GOU L,GU X H,ZHUANG LY,DUAN L F,LI J J,LIN J.Quantitative inversion of soil organic matter content based on continuous wavelet transform.Spectroscopy and Spectral Analysis,2018,38(11):3521-3527.(in Chinese)
    [25]王立志.倒伏胁迫下的玉米群体生长指标高光谱响应机理解析[D].焦作:河南理工大学,2017.WANG L Z.Hyperspectral response mechanism analysis of maize population growth index under lodging stress[D].Jiaozuo:Henan Polytechnic University,2017.(in Chinese)
    [26]赵佳佳,冯美臣,杨武德,李广信,王超,王慧琴,朱智慧.倒伏胁迫下冬小麦冠层光谱及红边特征.山西农业科学,2015,43(6):673-676.ZHAO J J,FENG M C,YANG W D,LI G X,WANG C,WANG H Q,ZHU Z H.Canopy spectral and red edge characteristics of winter wheat under lodging stress.Journal of Shanxi Agricultural Sciences,2015,43(6):673-676.(in Chinese)
    [27]胡宗杰,张杰,王召海.灌浆期小麦倒伏后光谱变化特征.安徽农业科学,2011,39(6):3190-3192.HU Z J,ZHANG J,WANG Z H.Spectral variation characteristics of wheat lodging in the filling period.Journal of Anhui Agricultural Sciences,2011,39(6):3190-3192.(in Chinese)
    [28]CLOUTIS E A.Hyperspectral geological remote sensing:Evaluation of analytical techniques.International Journal Remote Sensing,1996,17(12):2215-2242
    [29]HUANG Z,TURNER B J,DURY S J,WALLIS L R,FOLEY W J.Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis.Remote Sensing of Environment,2004,93:18-29.
    [30]李梦洁,张曼胤,崔丽娟,王贺年,郭子良,李伟,魏圆云,杨思,龙颂元.基于连续小波变换和随机森林的芦苇叶片汞含量反演.中国农业生态学报,2018,26(11):1730-1738.LI M J,ZHANG M Y,CUI L J,WANG H N,GUO Z L,LI W,WEIY Y,YANG S,LONG S Y.Inversion of Hg content in reed leaf using continuous wavelet transformation and random forest.Chinese Journal of Eco-Agriculture,2018,26(11):1730-1738.(in Chinese)
    [31]于雷,洪永胜,周勇,朱强.连续小波变换高光谱数据的土壤有机质含量反演模型构建.光谱学与光谱分析,2016,36(5):1428-1433.YU L,HONG Y S,ZHOU Y,ZHU Q.Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation.Spectroscopy and Spectral Analysis,2016,36(5):1428-1433.(in Chinese)
    [32]梁栋,杨勤英,黄文江,彭代亮,赵晋陵,黄林生,张东彦,宋晓宇.基于小波变换与支持向量机回归的冬小麦叶面积指数估算.红外与激光工程,2015,44(1):335-340.LIANG D,YANG Q Y,HUANG W J,PENG D L,ZHAO J L,HUANG L S,ZHANG D Y,SONG X Y.Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat.Infrared and Laser Engineering,2015,44(1):335-340.(in Chinese)
    [33]林鹏达,佟志军,张继权,赵云升,李向前,朱晓萌.基于CWT的黑土有机质含量野外高光谱反演模型.水土保持研究,2018,25(2):46-57.LIN P D,TONG Z J,ZHANG J Q,ZHAO Y S,LI X Q,ZHU X M.Inversion of black soil organic matter content with field hyperspectral reflectance based on continuous wavelet transformation.Research of Soil and Water Conservation.2018,25(2):46-57.(in Chinese)
    [34]王亮,丰光,李妍妍,景希强,黄长玲.玉米倒伏与植株农艺性状和病虫害发生关系的研究.作物杂志,2016(2):83-88.WANG L,FENG G,LI Y Y,JING X Q,HUANG C L.Relationship between maize lodging resistance and agronomic traits,plant diseases,and insect pests.Crops,2016(2):83-88.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700