用户名: 密码: 验证码:
柱花草苯丙氨酸解氨酶(SgPALs)对生物胁迫与非生物胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Phenylpropane Ammonia-lyase on Biotic and Abiotic Stress in Stylosanthes
  • 作者:郭鹏飞 ; 雷健 ; 罗佳佳 ; 刘攀道 ; 虞道耿 ; 罗丽娟
  • 英文作者:GUO Pengfei;LEI Jian;LUO Jiajia;LIU Pandao;YU Daogeng;LUO Lijuan;Institute of Tropical Agriculture and Forestry, Hainan University;Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences;
  • 关键词:柱花草 ; 苯丙氨酸解氨酶 ; 类黄酮 ; 生物胁迫 ; 非生物胁迫
  • 英文关键词:Stylosanthes guianensis;;phenylalanine ammonia-lyase;;flavonoids;;biotic stress;;abiotic stress
  • 中文刊名:热带作物学报
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:海南大学热带农林学院;中国热带农业科学院热带作物品种资源研究所;
  • 出版日期:2019-08-16 11:56
  • 出版单位:热带作物学报
  • 年:2019
  • 期:09
  • 基金:海南省自然科学基金青年基金项目(No.318QN265);; 国家自然科学基金项目(No.31872409);; 国家重点研发课题项目(No.2018YFD0201109-5)
  • 语种:中文;
  • 页:78-87
  • 页数:10
  • CN:46-1019/S
  • ISSN:1000-2561
  • 分类号:S541.9
摘要
本研究以热研2号柱花草为材料,分析其苯丙氨酸解氨酶(PAL)活性、总酚含量、类黄酮含量、总抗氧化能力和SgPALs基因表达模式对生物胁迫(炭疽菌侵染)与非生物胁迫(干旱和盐胁迫)的响应。结果表明,在3种胁迫处理下,柱花草不同组织部位的PAL活性增加18.58%~123.56%,且叶片的总酚含量、类黄酮含量和总抗氧化能力分别增加65.11%~68.00%、51.00%~76.87%和83.00%~262.08%,差异显著。在干旱和盐胁迫处理下,根系的总酚含量、类黄酮含量和总抗氧化能力也显著提高43.77%~51.12%、45.46%~45.98%和60.45%~97.89%。随后对SgPALs的表达模式分析表明,除SgPAL4外,其他3个SgPALs受炭疽菌侵染诱导上调表达;在干旱胁迫下,根系中4个SgPALs均增强表达,但叶片中仅SgPAL1和SgPAL4上调表达;在盐胁迫下,根系中4个SgPALs也都上调表达,叶片中除SgPAL3下调表达外,其他3个SgPALs增强表达。综上所述,在遭受生物胁迫和非生物胁迫时,柱花草中的SgPALs基因表达及PAL酶活性升高,伴随着总酚与类黄酮含量的同步升高,表明其对环境胁迫的抗性升高。
        Changes in PAL activity, total phenol and flavonoid content, total antioxidant capacity and SgPALs expression pattern were analyzed to study the responses of Stylosanthes guianensis cv. Reyan2 to biotic(infectied by Colletotrichum gloeosporioides) and abiotic(drought and salt) stresses. PAL activity increased by 18.58%-123.56% in different tissues under treatments of the three different stresses. The total phenol and total flavonoid content, and the total antioxidant capacity significantly increased by 65.11%-68.00%, 51.00%-76.87% and 83.00%-262.08%, respectively, in the leaf by pathogen infection, drought and salt stress, and similarly increased by 43.77%-51.12%, 45.46%-45.98% and 60.45%-97.89%, respectively, in the root by pathogen infection, drought and salt stress. PAL gene expression patterns showed that the cloned SgPALs genes, except SgPAL4, were up-regulated by anthrax infection in the leaf. The SgPALs genes were up-regulated by drought stress in the root while only SgPAL1 and SgPAL4 were up-regulated in the leaf. Under salt stress, the SgPALs genes were up-regulated in the root, while the SgPALs genes, except SgPAL3, were down-regulated in the leaf.
引文
[1] Sewelam N, Kazan K, Schenk P M. Global plant stress signaling:reactive oxygen species at the cross-road[J]. Frontiers in Plant Science, 2016, 7(187):187.
    [2] Zhang C, Wang X, Zhang F, et al. Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards Phytophthora sojae infection[J]. Scientific Reports, 2017,7(1):7242.
    [3] Sivankalyani V, Feygenberg O, Diskin S, et al. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance[J]. Postharvest Biology and Technology, 2016, 111:132-139.
    [4] Gong Q, Yang Z, Chen E, et al. A phi-class glutathione S-transferase gene for Verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study[J]. Plant and Cell Physiology, 2017, 59(2):275-289.
    [5] Supratim B, Venkategowda R, Anuj K, et al. Plant adaptation to drought stress[J]. F1000 Research, 2016, 5:1554.
    [6] Marcum K B. Salinity tolerance mechanisms of grasses in the subfamily chloridoideae[J]. Crop Science, 1999, 39(4):1153-1160.
    [7] Chen Y, Lin F, Yang H, et al. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba:relationship to chlorophyll fluorescence, ion homeostasis,antioxidant system and ultrastructure[J]. Acta Physiologiae Plantarum, 2014, 36(12):3173-3187.
    [8] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410.
    [9] Fraser C M, Chapple C. The phenylpropanoid pathway in Arabidopsis[J]. The Arabidopsis Book, 2011, 9:e0152.
    [10] Treutter D. Significance of flavonoids in plant resistance:a review[J]. Environmental Chemistry Letters, 2006, 4(3):147-157.
    [11] Chang A, Lim M H, Lee S W, et al. Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized[J]. Journal of Biological Chemistry, 2008,283(48):33591-33601.
    [12] Rohde, A. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism[J]. The Plant Cell Online, 2004, 16(10):2749-2771.
    [13] Tonnessen B W, Manosalva P, Lang J M, et al. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance[J]. Plant Molecular Biology, 2015, 87(3):273-286.
    [14] Feucht W, Treutter D, Dithmar H, et al. Loss of nuclear flavanols during drought periods in Taxus baccata[J]. Plant Biology, 2013, 15(3):462-470.
    [15] Feucht W, Treutter D, Jürgen P. Flavanols in nuclei of tree species:facts and possible functions[J]. Trees:Structure and Function, 2012, 26(5):1413-1425.
    [16]陈志坚,罗佳佳,彭玺如,等.不同柱花草种质的抗旱性分析[J].热带作物学报, 2017, 38(10):1790-1795.
    [17]薛瑞,周广奇,胡新文,等.柱花草种质抗旱性综合评价[J].中国农学通报, 2009, 25(11):224-233.
    [18]刘一明,冯宇,丁西朋,等. 67份柱花草耐盐性综合评价[J].热带作物学报, 2017, 38(11):2040-2049.
    [19]易克贤.柱花草炭疽病及其抗病育种进展[J].中国草地学报, 2001, 23(4):59-65.
    [20] Wang H, Chen Z, Liu G, et al. Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection[J]. Plant Physiology&Biochemistry, 2017, 118:256.
    [21] Jia Y X, Chen Z J, Yang M X, et al. First report of anthracnose on Stylosanthes guianensis caused by Colletotrichum carstii in China[J]. Plant Disease, 2017, 101(4):630.
    [22] Chang C C, Yang M H, Wen H M, et al. Estimation of total flavonoid content in propolis by two complementary colorimetric methods[J]. Journal of Food and Drug Analysis, 2002,10(3):178-182.
    [23] Uarrota V G, Moresco R, Coelho B, et al. Metabolomics combined with chemometric tools(PCA, HCA, PLS-DA and SVM)for screening cassava(Manihot esculenta Crantz)roots during postharvest physiological deterioration[J]. Food Chemistry, 2014, 161:67-78.
    [24] Jiang C, Liu L, Li X, et al. Insights into aluminum-tolerance pathways in Stylosanthes as revealed by RNA-Seq analysis[J]. Scientific Reports, 2018, 8(1):6072.
    [25] Liu P D, Xue Y B, Chen Z J, et al. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes[J]. Journal of Experimental Botany, 2016,67(14):4141-4154.
    [26] Zhang X, Liu C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids[J]. Molecular Plant, 2015, 8(1):17-27.
    [27] Macdonald J L, Punja Z K. Occurrence of botrytis leaf blight,anthracnose leaf spot, and white blister rust on Wasabia japonica in British Columbia[J]. Canadian Journal of Plant Pathology, 2017, 39(1):60-71.
    [28] Diao Y Z, Zhang C, Liu F, et al. Colletotrichum species causing anthracnose disease of chili in China[J]. Persoonia Molecular Phylogeny&Evolution of Fungi, 2017, 38:20-37.
    [29] Vera Saltos M B, Naranjo Puente B F, Milella L, et al. Antioxidant and free radical scavenging activity of phenolics from Bidens humilis[J]. Planta Medica, 2015, 81(12/13):1056-1064.
    [30] Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis[J]. Plant Biology, 2010,7(6):581-591.
    [31] Zhang Y, Butelli E, De Stefano R, et al. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold[J]. Current Biology,2013, 23(12):1094-1100.
    [32] Shine M B, Yang J W, El-Habbak M, et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean[J]. New Phytologist, 2016, 212:627-636.
    [33] Alinian S, Razmjoo J, Zeinali H. Flavonoids, anthocynins,phenolics and essential oil produced in cumin(Cuminum cyminum L.)accessions under different irrigation regimes[J].Industrial Crops and Products, 2016, 81:49-55.
    [34] Hamada A E, Gaurav Z, Hegab M M, et al. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs[J]. Frontiers in Plant Science,2016, 7(580):276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700