用户名: 密码: 验证码:
SiC纳米纤维增强碳化硅陶瓷的性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Properties of silicon carbide ceramics reinforced by SiC nanofibers
  • 作者:孔文龙 ; 傅肃嘉 ; 刘东旭 ; 陈建军
  • 英文作者:KONG Wenlong;FU Sujia;LIU Dongxu;CHEN Jianjun;Silk Institute, College of Materials and Textiles,Zhejiang Sci-Tech University;Zhejiang Light-Tough Composite Materials Co., Ltd.;
  • 关键词:SiC纳米纤维 ; 凝胶注模 ; 反应烧结 ; 碳化硅复合陶瓷
  • 英文关键词:SiC nanofibers;;gel-casting;;reaction sintering;;SiC composite ceramics
  • 中文刊名:浙江理工大学学报(自然科学版)
  • 英文刊名:Journal of Zhejiang Sci-Tech University(Natural Sciences Edition)
  • 机构:浙江理工大学材料与纺织学院丝绸学院;浙江立泰复合材料股份有限公司;
  • 出版日期:2018-12-03 16:18
  • 出版单位:浙江理工大学学报(自然科学版)
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(51572243)
  • 语种:中文;
  • 页:13-18
  • 页数:6
  • CN:33-1338/TS
  • ISSN:1673-3851
  • 分类号:TQ174.1
摘要
以SiC纳米纤维作为增强体,采用凝胶注模成型工艺制备碳化硅陶瓷坯体,通过反应烧结制备SiC纳米纤维增强碳化硅陶瓷基复合材料;采用两种不同粒径的碳化硅粉体为原料,加入不同质量分数的SiC纳米纤维,通过丙烯酰胺聚合体系制备素坯,坯体经干燥、脱胶后渗硅烧结得到复合陶瓷。利用万能试验机和扫描电镜分析碳化硅陶瓷力学性能及显微结构。结果表明:SiC纳米纤维的加入有助于复合陶瓷力学性能的提高;SiC纳米纤维含量为12 wt%,复合陶瓷抗弯强度为267 MPa,与未加SiC纳米纤维相比提高28%。
        Silicon carbide ceramics body was prepared by gel-casting technology. Then, silicon carbide ceramic matrix composites reinforced by SiC nanofibers were prepared through reactive sintering. Silicon carbide biscuit was prepared with polymerization of acrylamide system by using SiC powder with two different sizes as raw material and adding different mass fraction of SiC nanofibers. The composite ceramics was obtained by drying, degumming and reactive sintering. mechanical properties and microstructure of silicon carbide ceramics were analyzed by universal tester and scanning electron microscope. The results showed that the addition of SiC nanofibers could improve the mechanical properties of composite ceramics. When the content of SiC nanofibers was 12 wt%, the bending strength of composite ceramics was 267 MPa, 28% higher than that without SiC nanofibers.
引文
[1] 佘继红,江东亮.碳化硅陶瓷的发展与应用[J].陶瓷科学与艺术,1998,32(3):3-11.
    [2] Young A C,Omatete O O,Janney M A,et al.Gelcasting of alumina[J].Journal of the American Ceramic Society,2010,74(3):612-618.
    [3] Omatete O O.Gelcasting:A new ceramic forming[J].Ceramic Bulletin,1991,70(10):1641-1649.
    [4] Prabhakaran K,Pavithran C.Gelcasting of alumina using urea-formaldehyde II.Gelation and ceramic forming[J].Ceramics International,2000,26(1):67-71.
    [5] Yang Y,Shimai S,Sun Y,et al.Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming[J].Journal of Materials Research,2013,28(15):2012-2016.
    [6] 张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术,2003(1):24-32.
    [7] 谢志鹏.结构陶瓷[M].北京:清华大学出版社,2011:469-486.
    [8] 何柏林,孙佳.碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J].硅酸盐通报,2009,28(6):1197-1202.
    [9] Chen J,Shi Q,Xin L,et al.A simple catalyst-free route for large-scale synthesis of SiC nanowires[J].Journal of Alloys & Compounds,2011,509(24):6844-6847.
    [10] He F,Liu Y,Tian Z,et al.Improvement of the strength and toughness of carbon fiber/SiC composites via chemical vapor infiltration-grown SiC nanowire interphases[J].Ceramics International,2017,44(2):2311-2319.
    [11] Pei B,Zhu Y,Yuan M,et al.Effect of in situ grown SiC nanowires on microstructure and mechanical properties of C/SiC composites[J].Ceramics International,2014,40(4):5191-5195.
    [12] 郎莹,魏红康,赵林,等.凝胶-注模法制备多孔陶瓷材料中的坯体干燥过程分析[J].人工晶体学报,2016,45(5):1255-1260.
    [13] Briscoe B J,Lo Biundo G.Drying of aqueous ceramic suspensions[J].Key Engineering Materials,1997,132-136:354-357.
    [14] 曾凡,陈建军,姜敏,等.SiC纳米线增强反应烧结碳化硅陶瓷的性能研究[J].硅酸盐通报,2018,37(2):586-590.
    [15] 张国莲,陈廷.纳米纤维的研究现状及其应用[J].纺织导报,2005(01):14-16.
    [16] 王零森,黄培云,黄伯云,等.特种陶瓷[M].2版.长沙:中南大学出版社,2005:274-304.
    [17] 史国普.纤维增强陶瓷基复合材料概述[J].陶瓷,2009(1):16-20.
    [18] 萧虹,艾兴.SiC晶须增韧Al2O3陶瓷刀具材料的增韧特性及其对刀具破损的影响[J].硅酸盐学报,1992,20(1):1-7.
    [19] 闫联生,李贺军,崔红,等.连续纤维补强增韧碳化硅基陶瓷复合材料研究进展[J].材料导报,2005,19(1):60-63.
    [20] 陈明伟,谢巍杰,邱海鹏.连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J].现代技术陶瓷,2016,37(6):393-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700