用户名: 密码: 验证码:
纤维素酶降解机理的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Cellulase Biodegradation Mechanism
  • 作者:张俊 ; 许超 ; 张宇 ; 梁翠谊 ; 许敬亮
  • 英文作者:ZHANG Jun;XU Chao;ZHANG Yu;LIANG Cuiyi;XU Jingliang;CAS Key Laboratory of Renewable Energy//Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Chemical Engineering and Energy,Zhengzhou University;
  • 关键词:纤维素酶 ; 蛋白质 ; 机理 ; 生物炼制
  • 英文关键词:cellulase;;protein;;mechanism;;biorefinery
  • 中文刊名:华南理工大学学报(自然科学版)
  • 英文刊名:Journal of South China University of Technology(Natural Science Edition)
  • 机构:中国科学院广州能源研究所中国科学院可再生能源重点实验室//广东省新能源和可再生能源研究开发与应用重点实验室;中国科学院大学;郑州大学化工与能源学院;
  • 出版日期:2019-09-15
  • 出版单位:华南理工大学学报(自然科学版)
  • 年:2019
  • 期:09
  • 基金:中国科学院对外合作重点项目(182344KYSB20160056);; 广东省工业高新技术领域科技计划项目(2017A010 105018)~~
  • 语种:中文;
  • 页:127-136
  • 页数:10
  • CN:44-1251/T
  • ISSN:1000-565X
  • 分类号:TK6;Q814
摘要
纤维素酶在生物炼制过程中具有重要地位,因而十分有必要深度解析酶解作用机理.纤维素是由D-葡萄糖聚合形成的高分子聚合物,它的降解在木质纤维素解聚过程中最为关键,由于其分子结构相当稳定,需要纤维素酶各结构域及组分协同作用,才能将其高效降解为可利用的糖类.本文总结国内外学者对纤维素酶降解机理的最新进展,首先从纤维素酶分子结构与功能的相互作用出发,揭示结构与功能间的互作关系,阐述生物催化分子机制,可为优化酶结构增强酶功能提供理论依据;其次概述纤维素酶降解机理的作用特点,论述酶促协同及其外部环境对纤维素酶活力的重要影响,可为酶解体系优化设计提供借鉴;最后,结合纤维素酶降解机理总结概括了有效降低酶成本的途径.
        Cellulase plays an important role in the biorefinery process,so it is necessary to deeply understand the mechanism of enzymatic hydrolysis.Cellulose as polymer compound formed by the polymerization of D-glucose,which is an important component of biomass,and the degradation of cellulose is the most significant step in the destructing process of lignocellulose.Due to its stable molecular structure,only through synergistic action of various domains and components of the cellulase can it be biodegraded into available saccharides.The recent research on the mechanism of cellulase degradation at home and abroad was reviewed.This review firstly explored the interaction between structure and function to reveal the relationship of between them and analyzed the molecular mechanism of biocatalyst,which provides theoretical basis for optimizing cellulase structure to improve catalytic ability.Secondly,the characteristics and molecular structure of cellulase degradation mechanism were discussed,and the important effect of its enzymatic synergy and environment on the enzyme activity was also investigated in order to provide references for the optimization design of enzymatic hydrolysis system.Finally,by combining the mechanism of cellulase biodegradation,the effective ways to reduce enzyme costs was summarized.
引文
[1] QIN Z C,ZHUANG Q L,CAI X M,et al.Biomass and biofuels in China:toward bioenergy resource potentials and their impacts on the environment [J].Renewable & Sustainable Energy Reviews,2018,82:2387- 2400.
    [2] RODIONOVA M V,POUDYAL R S,TIWARI I,et al.Biofuel production:challenges and opportunities [J].International Journal of Hydrogen Energy,2017,42(12):8450- 8461.
    [3] WILSON D B.Cellulases and biofuels [J].Current Opi-nion in Biotechnology,2009,20(3):295- 299.
    [4] RUBIN E M.Genomics of cellulosic biofuels [J].Nature,2008,454(7206):841- 845.
    [5] MYERS F L,NORTHCOTE D.Partial purification and some properties of a cellulase from Helix pomatia [J].Biochemical Journal,1959,71(4):749- 756.
    [6] REESE E T,SIU R G H,LEVINSON H S.The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis [J].Journal of Bacteriology,1950,59(4):485.
    [7] ZECHEL D L,WITHERS S G.Glycosidase mechanisms:anatomy of a finely tuned catalyst [J].Accounts of Chemi-cal Research,2000,33(1):11- 18.
    [8] ARTZI L,BAYER E A,MORAIS S.Cellulosomes:bacterial nanomachines for dismantling plant polysaccharides [J].Nature Reviews Microbiology,2017,15(2):83- 95.
    [9] 高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展 [J].自然科学进展,2003,13(1):23- 31.GAO Peiji.Adances in cellulase degradation mechanism,structure and function [J].Progress in Natural Science,2003,13(1):23- 31.
    [10] VAN TILBEURGH H,TOMME P,CLAEYSSENS M,et al.Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei [J].FEBS letters,1986,204(2):223- 227.
    [11] PAYNE C M,KNOTT B C,MAYES H B,et al.Fungal cellulases [J].Chemical reviews,2015,115(3):1308- 1448.
    [12] BOMMARIUS A S,SOHN M,KANG Y Z,et al.Protein engineering of cellulases [J].Current Opinion in Biotechnology,2014,29:139- 145.
    [13] HALDAR D,SEN D,GAYEN K.A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison [J].International Journal of Green Energy,2016,13(12):1232- 1253.
    [14] QUIROZ-CASTANEDA R E,FOLCH-MALLOL J L.Hydrolysis of biomass mediated by cellulases for the production of sugars[M]//Sustainable degradation of lignocellulosic biomass-techniques,applications and commercialization.London:IntechOpen,2013.
    [15] SPEZIO M,WILSON D B,KARPLUS P A.Crystal Structure of the catalytic domain of a Thermophilic endocellulase [J].Biochemistry,1993,32(38):9906- 9916.
    [16] 张小梅,李单单,王禄山,等.纤维素酶家族及其催化结构域分子改造的新进展 [J].生物工程学报,2013,29(4):422- 433.ZHANG Xiaomei,LI Dandan,WANG Lushan,et al.Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family [J].Chinese Journal of Bio-technology,2013,29(4):422- 433.
    [17] ZHENG F,TU T,WANG X Y,et al.Enhancing the catalytic activity of a novel GH5 cellulase GtCeⅠ5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6 [J].Biotechnology for Biofuels,2018,11(1):6/1- 13.
    [18] BORISOVA A S,ENEYSKAYA E V,JANA S,et al.Correlation of structure,function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride,T.reesei and T.harzianum [J].Biotechnology for Biofuels,2018,11(1):5/1- 22.
    [19] CHEN M,HIMMEL M E,WILSON D B,et al.Simulation studies of substrate recognition by the exocellulase CelF from Clostridium cellulolyticum [J].Biotechnology and Bioengineering,2016,113(7):1433- 1440.
    [20] QIAN M D,GUAN S S,SHAN Y M,et al.Structural and molecular basis of cellulase Cel48F by computational modeling:insight into catalytic and product release mechanism [J].Journal of Structural Biology,2016,194(3):347- 356.
    [21] GILKES N,WARREN R,MILLER R,et al.Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis [J].Journal of Biological Chemistry,1988,263(21):10401- 10407.
    [22] CANTAREL B L,COUTINHO P M,RANCUREL C,et al.The carbohydrate-active enzymes database (CAZy):an expert resource for glycogenomics [J].Nucleic Acids Research,2008,37(suppl_1):D233-D238.
    [23] IGARASHI K,KOIVULA A,WADA M,et al.High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose [J].Journal of Biological Chemistry,2009,284(52):36186- 36190.
    [24] CARRARD G,KOIVULA A,SODERLUND H,et al.Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose [J].Proceedings of the National Academy of Sciences,2000,97(19):10342- 10347.
    [25] MCCARTNEY L,GILBERT H J,BOLAM D N,et al.Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers [J].Analytical Biochemistry,2004,326(1):49- 54.
    [26] DIN N,DAMUDE H G,GILKES N R,et al.C1-Cx revisited:intramolecular synergism in a cellulase [J].Proceedings of the National Academy of Sciences,1994,91(24):11383- 11387.
    [27] CATTANEO C,CESARO P,SPERTINO S,et al.Enhanced features of Dictyoglomus turgidum cellulase A engineered with carbohydrate binding module 11 from Clostridium thermocellum [J].Scientific Reports,2018,8(1):4402.
    [28] ZHANG Y,YANG F,HU F H,et al.Binding preference of family 1 carbohydrate binding module on nanocrystalline cellulose and nanofibrillar cellulose films assessed by quartz crystal microbalance [J].Cellulose,2018,25(6):3327- 3337.
    [29] ZHANG K D,LI W,WANG Y F,et al.Processive degradation of crystalline cellulose by a multimodular endoglucanase via a wirewalking mode [J].Biomacromolecules,2018,19(5):1686- 1696.
    [30] LEE J-H,KIM K-N,CHOI Y-J.Identification and charac-terization of a novel inulin binding module (IBM) from the CFTase of Bacillus macerans CFC1 [J].FEMS Microbiology Letters,2004,234(1):105- 110.
    [31] HALL M,BANSAL P,LEE J H,et al.Biological pretreatment of cellulose:enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases [J].Bioresource Technology,2011,102(3):2910- 2915.
    [32] GILKES N,HENRISSAT B,KILBURN D,et al.Domains in microbial β- 1,4-glycanases:sequence conservation,function,and enzyme families [J].Microbiological Reviews,1991,55(2):303- 315.
    [33] SRISODSUK M,REINIKAINEN T,PENTTILA M,et al.Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose [J].Journal of Biological Chemistry,1993,268(28):20756- 20761.
    [34] RECEVEUR V,CZJZEK M,SCHULEIN M,et al.Dimension,shape,and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering [J].Journal of Biological Chemistry,2002,277(43):40887- 40892.
    [35] LI P P,ZHOU Y,LI Q,et al.Extending the linker region increases the activity of the Bacillus subtilis cellulase CelI15 [J].Biotechnology Letters,2016,38(9):1587- 1593.
    [36] PETKUN S,GRINBERG I R,LAMED R,et al.Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts:structural and functional significance of the intermodular linker [J].PeerJ,2015,3:e1126.
    [37] RUIZ D M,TUROWSKI V R,MURAKAMI M T.Effects of the linker region on the structure and function of modular GH5 cellulases [J].Scientific Reports,2016,6:28504.
    [38] FEDAROVICH A,NICHOLAS R A,DAVIES C.Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis [J].Journal of Molecular Biology,2010,398(1):54- 65.
    [39] WU B,ZHENG S,PEDROSO M M,et al.Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS- 5 with potential applications in the saccharification of cellulosic substrates [J].Biotechnology for Biofuels,2018,11(1):20/1- 15.
    [40] KIM I J,LEE H J,CHOI I G,et al.Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase [J].Applied Microbiology Biotechnology,2014,98(20):8469- 8480.
    [41] SHANG B Z,CHU J W.Kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy [J].ACS Catalysis,2014,4(7):2216- 2225.
    [42] JUTURU V,WU J C.Microbial cellulases:engineering,production and applications [J].Renewable & Sustainable Energy Reviews,2014,33:188- 203.
    [43] WESTERMARK U,ERIKSSON K-E.Cellobiose:quinone oxidoreductase,a new wood-degrading enzyme from white-rot fungi [J].Acta Chemica Scandinavica B,1974,28(2):209- 214.
    [44] WESTERMARK U,ERIKSSON K E.Purification and pro-perties of cellobiose:quinone oxidoreductase from Sporotrichum pulverulentum [J].Acta Chemica Scandinavica B,1975,29(4):419- 424.
    [45] WANG M,LU X F.Exploring the synergy between cellobiose dehydrogenase from Phanerochaete chrysosporium and cellulase from Trichoderma reesei [J].Frontiers in Microbiology,2016,7:620/1- 10.
    [46] VAAJE-KOLSTAD G,HORN S J,VAN AALTEN D M,et al.The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation [J].Journal of Biological Chemistry,2005,280(31):28492- 28497.
    [47] VAAJE-KOLSTAD G,WESTERENG B,HORN S J,et al.An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides [J].Science,2010,330(6001):219- 222.
    [48] LEVASSEUR A,DRULA E,LOMBARD V,et al.Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes [J].Biotechnology for Biofuels,2013,6(1):41/1- 14.
    [49] SONG B,LI B,WANG X,et al.Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility [J].Biotechnology for Biofuels,2018,11(1):41/1- 11.
    [50] HAMRE A G,STROMNES A G S,GUSTAVSEN D,et al.Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity [J].Carbohydrate Research,2019,473:66- 71.
    [51] BEY M,ZHOU S,POIDEVIN L,et al.Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (Family GH61) from Podospora anserina [J].Applied and Environmental Microbio-logy,2013,79(2):488- 496.
    [52] PELLEGRINI V O A,BERNARDES A,REZENDE C A,et al.Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endo- and exoglucanases [J].Cellulose,2018,25(3):1865- 1881.
    [53] YANG M,ZHANG K D,ZHANG P Y,et al.Synergistic cellulose hydrolysis dominated by a multi-modular processive endoglucanase from Clostridium cellulosi [J].Frontiers in Microbiology,2016,7:932/1- 8.
    [54] GEORGELIS N,NIKOLAIDIS N,COSGROVE D J.Bacterial expansins and related proteins from the world of microbes [J].Applied Microbiology and Biotechnology,2015,99(9):3807- 3823.
    [55] 王璐.木腐真菌分泌的低分子量物质在木素生物降解中的作用机制 [D].济南:山东大学,2008.
    [56] 王蔚,高培基.密粘褶菌胞外低分子量多肽在纤维素降解中作用的研究 [J].微生物学报,2002,42(2):220- 225.WANG Wei,GAO Peiji.A possible role of a low-molecular-weight peptide from Gloeophyllum trabeum in cellulose degradation [J].Acta Microbiological Sinica,2002,42(2):220- 225.
    [57] CHEN X A,ISHIDA N,TODAKA N,et al.Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1 [J].Applied and Environmental Microbiology,2010,76(8):2556- 2561.
    [58] SONG H T,GAO Y,YANG Y M,et al.Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates [J].Bioresource Technology,2016,219:710- 715.
    [59] JI X F,XU Y X,ZHANG C,et al.A new locus affects cell motility,cellulose binding,and degradation by Cytophaga hutchinsonii [J].Applied Microbiology and Biotechnology,2012,96(1):161- 170.
    [60] STROBEL K L,PFEIFFER K A,BLANCH H W,et al.Engineering Cel7A carbohydrate binding module and linker for reduced lignin inhibition [J].Biotechnology and Bioengineering,2016,113(6):1369- 1374.
    [61] LIN X L,QIU X Q,YUAN L,et al.Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates [J].Bioresource Technology,2015,185:165- 170.
    [62] TIAN Y,JIANG Y,OU S Y.Interaction of cellulase with three phenolic acids [J].Food Chemistry,2013,138(2/3):1022- 1027.
    [63] HU J G,GOURLAY K,ARANTES V,et al.The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates [J].Chemsuschem,2015,8(5):901- 907.
    [64] IGARASHI K,WADA M,HORI R,et al.Surface density of cellobiohydrolase on crystalline celluloses—a critical parameter to evaluate enzymatic kinetics at a solid-liquid interface [J].FEBS Journal,2006,273(13):2869- 2878.
    [65] IGARASHI K,WADA M,SAMEJIMA M.Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase [J].FEBS Journal,2007,274(7):1785- 1792.
    [66] SHIBAFUJI Y,NAKAMURA A,UCHIHASHI T,et al.Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I ( Cel7A) hydrolyzing crystalline cellulose Iα and IIII [J].Journal of Biological Chemistry,2014,289(20):14056- 14065.
    [67] VERMAAS J V,PETRIDIS L,QI X H,et al.Mechanism of lignin inhibition of enzymatic biomass deconstruction [J].Biotechnology for Biofuels,2015,8(1):217/1- 16.
    [68] SHIDA Y,FURUKAWA T,OGASAWARA W.Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei,the hyper-cellulolytic filamentous fungus [J].Bioscience,Biotechnology and Biochemistry,2016,80(9):1712- 1729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700