用户名: 密码: 验证码:
基于电化学生物传感器的核酸肿瘤标志物检测研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in detection of nucleic acid tumor biomarkers via electrochemical biosensors
  • 作者:卢宇勋 ; 李灿鹏 ; 赵卉
  • 英文作者:LU YuXun;LI CanPeng;ZHAO Hui;State Key Laboratory for Conservation and Utilization of Bio-resource & School of Life Sciences, Yunnan University;College of Pharmacy ·School of Chemical Science and Technology, Yunnan University;
  • 关键词:肿瘤标志物 ; 核酸 ; 生物传感 ; 电化学检测
  • 英文关键词:tumor biomarker;;nucleic acid;;biosensor;;electrochemical detection
  • 中文刊名:中国科学:生命科学
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:云南大学省部共建云南生物资源保护与利用国家重点实验室&生命科学学院;云南大学化学科学与工程学院·药学院;
  • 出版日期:2019-07-10 11:28
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金(批准号:21565029,21764005,31760311,31460038);; 云南省应用基础研究计划重点项目(批准号:2018FA005);; 云南省重点研发计划项目(批准号:2018BC005);; 云南大学“东陆学者”支持计划和“青年英才培育计划”;; 遗传资源与进化国家重点实验室开放课题(批准号:GREKF17-01);; 省部共建云南生物资源保护与利用国家重点实验室开放课题(批准号:2017KF002)资助
  • 语种:中文;
  • 页:40-53
  • 页数:14
  • CN:11-5840/Q
  • ISSN:1674-7232
  • 分类号:R730.4
摘要
肿瘤生物标志物可以实现对癌症的早期诊断,监测肿瘤的发展和预后.随着高通量测序技术的发展,各种类型的核酸被发现与肿瘤的发生发展相关,可作为核酸肿瘤标志物,而且它们对癌症的早期诊断有着重要意义.由于核酸大都具有不稳定性、表达的动态性和低丰度等特点,因此快速灵敏并特异地检测该类肿瘤标志物就显得尤为重要.电化学生物传感器作为一类快速发展的检测方法能够满足这些需求.与传统的检测方法相比,电化学分析法彰显高效、灵敏、简便等优点,而且电化学检测设备装置轻便、廉价且易于微型化和集成化.近年来,用于检测核酸的电化学生物传感器取得了相当大的发展,在精准医疗中具有潜在的应用前景.本文从各种类型的核酸肿瘤标志物入手,介绍检测核酸标志物的电化学传感器在近年来的发展情况,特别是对电化学传感器体系中的探针设计和信号放大策略两个方面进行重点介绍.
        The detection of tumor biomarkers can result in early diagnosis and monitoring of the development and prognosis of cancer. With the development of high-throughput sequencing technology, various types of nucleic acids have been identified to be associated with tumorigenesis and tumor progression. These nucleic acids can be used as tumor biomarkers and play an important role in the early diagnosis of cancer. Because most nucleic acids have the characteristics of instability, dynamic expression, and low abundance, it is particularly important to detect these types of tumor markers quickly, sensitively, and specifically. Electrochemical biosensor technology is a fast-developing method that meets these requirements. Compared with the traditional detection methods,electrochemical detection has attracted more attention due to its high efficiency, sensitivity, and simplicity. Moreover, the detection equipment is portable, cheap, and easily miniaturized and integrated. Recently, electrochemical biosensors for nucleic acid detection have made considerable advances and have demonstrated their potential application in precision medicine. This review focuses on various types of nucleic acid tumor biomarkers and summarizes the latest progress achieved in recent years in developing electrochemical sensors for detecting nucleic acid markers, with an emphasis on the probe design and signal amplification strategies in electrochemical sensor systems.
引文
1 Bray F,Ferlay J,Soerjomataram I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries.CA-A Cancer J Clin,2018,68:394-424
    2 Wu L,Qu X.Cancer biomarker detection:Recent achievements and challenges.Chem Soc Rev,2015,44:2963-2997
    3 Sawyers C L.The cancer biomarker problem.Nature,2008,452:548-552
    4 Siravegna G,Marsoni S,Siena S,et al.Integrating liquid biopsies into the management of cancer.Nat Rev Clin Oncol,2017,14:531-548
    5 Jayanthi V S P K S A,Das A B,Saxena U.Recent advances in biosensor development for the detection of cancer biomarkers.Biosens Bioelectron,2017,91:15-23
    6 Djebali S,Davis C A,Merkel A,et al.Landscape of transcription in human cells.Nature,2012,489:101-108
    7 Ludwig J A,Weinstein J N.Biomarkers in cancer staging,prognosis and treatment selection.Nat Rev Cancer,2005,5:845-856
    8 Dawson S J,Tsui D W Y,Murtaza M,et al.Analysis of circulating tumor DNA to monitor metastatic breast cancer.N Engl J Med,2013,368:1199-1209
    9 Turner A P F.Biosensors:Sense and sensibility.Chem Soc Rev,2013,42:3184-3196
    10 Thévenot D R,Toth K,Durst R A,et al.Electrochemical biosensors:Recommended definitions and classification.Anal Lett,2001,34:635-659
    11 Labib M,Sargent E H,Kelley S O.Electrochemical methods for the analysis of clinically relevant biomolecules.Chem Rev,2016,116:9001-9090
    12 Kobayashi S,Boggon T J,Dayaram T,et al.EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.N Engl J Med,2005,352:786-792
    13 Downward J.Targeting RAS signalling pathways in cancer therapy.Nat Rev Cancer,2003,3:11-22
    14 Levine A J,Oren M.The first 30 years of p53:Growing ever more complex.Nat Rev Cancer,2009,9:749-758
    15 Qin Z,Ljubimov V A,Zhou C,et al.Cell-free circulating tumor DNA in cancer.Chin J Cancer,2016,35:36
    16 Christie E L,Dawson S J,Bowtell D D L.Blood worth bottling:Circulating tumor DNA as a cancer biomarker.Cancer Res,2016,76:5590-5591
    17 Calapre L,Warburton L,Millward M,et al.Circulating tumour DNA(ctDNA)as a liquid biopsy for melanoma.Cancer Lett,2017,404:62-69
    18 Tie J,Kinde I,Wang Y,et al.Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer.Ann Oncol,2015,26:1715-1722
    19 Jamal-Hanjani M,Wilson G A,Horswell S,et al.Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer.Ann Oncol,2016,27:862-867
    20 Baylin S B,Herman J G,Graff J R.Alterations in DNA methylation:A fundamental aspect of neoplasia.Adv Cancer Res,1997,72:141-196
    21 Herman J G,Baylin S B.Gene silencing in cancer in association with promoter hypermethylation.N Engl J Med,2003,349:2042-2054
    22 Jones P A,Baylin S B.The epigenomics of cancer.Cell,2007,128:683-692
    23 Baylin S B,Herman J G.DNA hypermethylation in tumorigenesis:Epigenetics joins genetics.Trends Genets,2000,16:168-174
    24 Alizadeh A A,Aranda V,Bardelli A,et al.Toward understanding and exploiting tumor heterogeneity.Nat Med,2015,21:846-853
    25 Sunde R A.mRNA transcripts as molecular biomarkers in medicine and nutrition.J Nutrit Biochem,2010,21:665-670
    26 Li Y,St John M A R,Zhou X,et al.Salivary transcriptome diagnostics for oral cancer detection.Clin Cancer Res,2004,10:8442-8450
    27 Bhattacharjee A,Richards W G,Staunton J,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.Proc Natl Acad Sci USA,2001,98:13790-13795
    28 Cancer Genome Atlas Network.Comprehensive molecular portraits of human breast tumours.Nature,2012,490:61-70
    29 Cancer Genome Atlas Network.Comprehensive molecular characterization of human colon and rectal cancer.Nature,2012,487:330-337
    30 Mattick J S,Makunin I V.Non-coding RNA.Human Mol Genets,2006,15:R17-R29
    31 Calin G A,Croce C M.MicroRNA signatures in human cancers.Nat Rev Cancer,2006,6:857-866
    32 Chen X,Ba Y,Ma L,et al.Characterization of microRNAs in serum:A novel class of biomarkers for diagnosis of cancer and other diseases.Cell Res,2008,18:997-1006
    33 Kumar S,Keerthana R,Pazhanimuthu A,et al.Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients.Indian J Biochem Bio,2013,50:210-214
    34 Lv Z D,Xin H N,Yang Z C,et al.miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer.J Cell Physiol,2019,234:10819-10826
    35 Mercer T R,Dinger M E,Mattick J S.Long non-coding RNAs:Insights into functions.Nat Rev Genet,2009,10:155-159
    36 Martens-Uzunova E S,B?ttcher R,Croce C M,et al.Long noncoding RNA in prostate,bladder,and kidney cancer.Eur Urol,2014,65:1140-1151
    37 Gupta R A,Shah N,Wang K C,et al.Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.Nature,2010,464:1071-1076
    38 Gutschner T,H?mmerle M,Eissmann M,et al.The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells.Cancer Res,2013,73:1180-1189
    39 Konishi H,Ichikawa D,Yamamoto Y,et al.Plasma level of metastasis-associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of hepatocellular carcinoma.Cancer Sci,2016,107:149-154
    40 Memczak S,Jens M,Elefsinioti A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency.Nature,2013,495:333-338
    41 Hansen T B,Jensen T I,Clausen B H,et al.Natural RNA circles function as efficient microRNA sponges.Nature,2013,495:384-388
    42 Salzman J,Gawad C,Wang P L,et al.Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types.PLoS ONE,2012,7:e30733
    43 Jeck W R,Sorrentino J A,Wang K,et al.Circular RNAs are abundant,conserved,and associated with ALU repeats.RNA,2013,19:141-157
    44 Memczak S,Papavasileiou P,Peters O,et al.Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood.PLoS ONE,2015,10:e0141214
    45 Chapman M H,Tidswell R,Dooley J S,et al.Whole genome RNA expression profiling of endoscopic biliary brushings provides data suitable for biomarker discovery in cholangiocarcinoma.J Hepatol,2012,56:877-885
    46 Li Y,Zheng Q,Bao C,et al.Circular RNA is enriched and stable in exosomes:A promising biomarker for cancer diagnosis.Cell Res,2015,25:981-984
    47 Li P,Chen S,Chen H,et al.Using circular RNA as a novel type of biomarker in the screening of gastric cancer.Clin Chim Acta,2015,444:132-136
    48 Verduci L,Strano S,Yarden Y,et al.The circRNA-microRNA code:Emerging implications for cancer diagnosis and treatment.Mol Oncol,2019,13:669-680
    49 Chen J,Li Y,Zheng Q,et al.Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer.Cancer Lett,2017,388:208-219
    50 Meyer K D,Saletore Y,Zumbo P,et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3′UTRs and near stop codons.Cell,2012,149:1635-1646
    51 Gilbert W V,Bell T A,Schaening C.Messenger RNA modifications:Form,distribution,and function.Science,2016,352:1408-1412
    52 Bellodi C,McMahon M,Contreras A,et al.H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation.Cell Rep,2013,3:1493-1502
    53 Wu Y,Yang X,Chen Z,et al.m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1.Mol Cancer,2019,18:87
    54 Wu L,Wu D,Ning J,et al.Changes of N6-methyladenosine modulators promote breast cancer progression.BMC Cancer,2019,19:326
    55 Tian B,Manley J L.Alternative cleavage and polyadenylation:The long and short of it.Trends Biochem Sci,2013,38:312-320
    56 Xia Z,Donehower L A,Cooper T A,et al.Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types.Nat Commun,2014,5:5274
    57 Xiang Y,Ye Y,Lou Y,et al.Comprehensive characterization of alternative polyadenylation in human cancer.J Natl Cancer Instit,2017,110:379-389
    58 Lembo A,Di Cunto F,Provero P,et al.Shortening of 3′UTRs correlates with poor prognosis in breast and lung cancer.PLoS ONE,2012,7:e31129
    59 Singh P,Alley T L,Wright S M,et al.Global changes in processing of m RNA 3′untranslated regions characterize clinically distinct cancer subtypes.Cancer Res,2009,69:9422-9430
    60 Morris A R,Bos A,Diosdado B,et al.Alternative cleavage and polyadenylation during colorectal cancer development.Clin Cancer Res,2012,18:5256-5266
    61 Ronkainen N J,Halsall H B,Heineman W R.Electrochemical biosensors.Chem Soc Rev,2010,39:1747
    62 Esteban-Fernández deávila B,Araque E,Campuzano S,et al.Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples.Anal Chem,2015,87:2290-2298
    63 Dou B,Li J,Jiang B,et al.Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor.Anal Chim Acta,2018,1038:166-172
    64 Wang L,Han Y,Xiao S,et al.Reverse strand-displacement amplification strategy for rapid detection of p53 gene.Talanta,2018,187:365-369
    65 Shoja Y,Kermanpur A,Karimzadeh F.Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNAbiosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode.Biosens Bioelectron,2018,113:108-115
    66 Weng X H,Xu X W,Wang C L,et al.Genotyping of common EGFR mutations in lung cancer patients by electrochemical biosensor.J Pharm Biomed Anal,2018,150:176-182
    67 Zeng N,Xiang J.Detection of KRAS G12D point mutation level by anchor-like DNA electrochemical biosensor.Talanta,2019,198:111-117
    68 Cai C,Guo Z,Cao Y,et al.A dual biomarker detection platform for quantitating circulating tumor DNA(ctDNA).Nanotheranostics,2018,2:12-20
    69 Das J,Ivanov I,Safaei T S,et al.Combinatorial probes for high-throughput electrochemical analysis of circulating nucleic acids in clinical samples.Angew Chem Int Ed,2018,57:3711-3716
    70 Chen F,Wang X,Cao X,et al.Accurate electrochemistry analysis of circulating methylated DNA from clinical plasma based on paired-end tagging and amplifications.Anal Chem,2017,89:10468-10473
    71 Bhattacharjee R,Moriam S,Nguyen N T,et al.A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement.Biosens Bioelectron,2019,126:102-107
    72 Haque M H,Gopalan V,Islam M N,et al.Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry.Anal Chim Acta,2017,976:84-93
    73 Li X M,Wang L L,Luo J,et al.A dual-amplified electrochemical detection of mRNA based on duplex-specific nuclease and bio-bar-code conjugates.Biosens Bioelectron,2015,65:245-250
    74 Islam M N,Gopalan V,Haque M H,et al.A PCR-free electrochemical method for messenger RNA detection in cancer tissue samples.Biosens Bioelectron,2017,98:227-233
    75 Torrente-Rodríguez R M,Campuzano S,Ruiz-Valdepe?as Montiel V,et al.Electrochemical bioplatforms for the simultaneous determination of interleukin(IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva.Biosens Bioelectron,2016,77:543-548
    76 Cheng H,Liu J,Ma W,et al.Low background cascade signal amplification electrochemical sensing platform for tumor-related m RNAquantification by target-activated hybridization chain reaction and electroactive cargo release.Anal Chem,2018,90:12544-12552
    77 Miao P,Jiang Y,Zhang T,et al.Electrochemical sensing of attomolar miRNA combining cascade strand displacement polymerization and reductant-mediated amplification.Chem Commun,2018,54:7366-7369
    78 Zhang H,Fan M,Jiang J,et al.Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification.Anal Chim Acta,2019,1064:33-39
    79 Chen X,Yao L,Wang Y C,et al.Novel electrochemical nanoswitch biosensor based on self-assembled pH-sensitive continuous circular DNA.Biosens Bioelectron,2019,131:274-279
    80 Guo W J,Wu Z,Yang X Y,et al.Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification.Biosens Bioelectron,2019,131:267-273
    81 Gong D,Hui X,Guo Z,et al.The synthesis of PEI core@silica shell nanoparticles and its application for sensitive electrochemical detecting miRNA.Talanta,2019,198:534-541
    82 Liu F,Xiang G,Jiang D,et al.Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA.Biosens Bioelectron,2015,74:214-221
    83 Islam M N,Moriam S,Umer M,et al.Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA.Analyst,2018,143:3021-3028
    84 Liu F,Li T,Zhang L,et al.PAMAM/polyhedral nanogold-modified probes with DNAase catalysis for the amperometric electrochemical detection of metastasis-associated lung adenocarcinoma transcript 1.J Biol Eng,2019,13:21
    85 Yin H,Wang H,Jiang W,et al.Electrochemical immunosensor for N6-methyladenosine detection in human cell lines based on biotinstreptavidin system and silver-SiO2signal amplification.Biosens Bioelectron,2017,90:494-500
    86 Dai T,Pu Q,Guo Y,et al.Analogous modified DNA probe and immune competition method-based electrochemical biosensor for RNAmodification.Biosens Bioelectron,2018,114:72-77
    87 Li Z,Li B,Yin H,et al.Electrochemical immunosensor based on hairpin DNA probe for specific detection of N6-methyladenosine RNA.JElectroan Chem,2017,804:192-198
    88 Zhao H,Liu F,Wu S,et al.Ultrasensitive electrochemical detection of Dicer1 3′UTR for the fast analysis of alternative cleavage and polyadenylation.Nanoscale,2017,9:4272-4282
    89 Zhao H,Liu F,Lu Y,et al.Ultrasensitive electrochemical detection of alternative cleavage and polyadenylation of CCND2 gene at the singlecell level.Senss Actuat B-Chem,2019,285:553-561
    90 Yang Y,Li C,Yin L,et al.Enhanced charge transfer by gold nanoparticle at DNA modified electrode and its application to label-free DNAdetection.ACS Appl Mater Interfaces,2014,6:7579-7584
    91 Mills D M,Martin C P,Armas S M,et al.A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands.Biosens Bioelectron,2018,109:35-42
    92 Li C,Wu D,Hu X,et al.One-step modification of electrode surface for ultrasensitive and highly selective detection of nucleic acids with practical applications.Anal Chem,2016,88:7583-7590
    93 Lin M,Song P,Zhou G,et al.Electrochemical detection of nucleic acids,proteins,small molecules and cells using a DNA-nanostructure-based universal biosensing platform.Nat Protoc,2016,11:1244-1263
    94 Lin M,Wen Y,Li L,et al.Target-responsive,DNA nanostructure-based E-DNA sensor for microRNA analysis.Anal Chem,2014,86:2285-2288
    95 Zeng D,Wang Z,Meng Z,et al.DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma.ACS Appl Mater Interfaces,2017,9:24118-24125
    96 Nielsen P E.Peptide nucleic acids(PNA)in chemical biology and drug discovery.Chem Biodivers,2010,7:786-804
    97 Egholm M,Buchardt O,Christensen L,et al.PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules.Nature,1993,365:566-568
    98 Giesen U,Kleider W,Berding C,et al.A formula for thermal stability(Tm)prediction of PNA/DNA duplexes.Nucleic Acids Res,1998,26:5004-5006
    99 Frank-Kamenetskii M.How the double helix breathes.Nature,1987,328:17-18
    100 Nonin S,Leroy J L,Guéron M.Terminal base pairs of oligodeoxynucleotides:Imino proton exchange and fraying.Biochemistry,1995,34:10652-10659
    101 Liu J,Tiefenauer L,Tian S,et al.PNA-DNA hybridization study using labeled streptavidin by voltammetry and surface plasmon fluorescence spectroscopy.Anal Chem,2006,78:470-476
    102 Boffa L C,Carpaneto E M,Allfrey V G.Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid.Proc Natl Acad Sci USA,1995,92:1901-1905
    103 Smolina I V,Demidov V V,Soldatenkov V A,et al.End invasion of peptide nucleic acids(PNAs)with mixed-base composition into linear DNA duplexes.Nucleic Acids Res,2005,33:e146
    104 Hu Q,Wang Q,Kong J,et al.Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of doublestranded DNA without sequence-preference.Biosens Bioelectron,2018,101:1-6
    105 Bi S,Yue S,Zhang S.Hybridization chain reaction:A versatile molecular tool for biosensing,bioimaging,and biomedicine.Chem Soc Rev,2017,46:4281-4298
    106 Cui L,Zhu Z,Lin N,et al.A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification:A dualamplification strategy for sensitive and selective microRNA detection.Chem Commun,2014,50:1576-1578
    107 Ali M M,Li F,Zhang Z,et al.Rolling circle amplification:A versatile tool for chemical biology,materials science and medicine.Chem Soc Rev,2014,43:3324-3341
    108 Dirks R M,Pierce N A.Triggered amplification by hybridization chain reaction.Proc Natl Acad Sci USA,2004,101:15275-15278
    109 Yang H,Gao Y,Wang S,et al.In situ hybridization chain reaction mediated ultrasensitive enzyme-free and conjugation-free electrochemcial genosensor for BRCA-1 gene in complex matrices.Biosens Bioelectron,2016,80:450-455
    110 Yao J,Zhang Z,Deng Z,et al.An enzyme free electrochemical biosensor for sensitive detection of miRNA with a high discrimination factor by coupling the strand displacement reaction and catalytic hairpin assembly recycling.Analyst,2017,142:4116-4123
    111 Zhang D Y,Seelig G.Dynamic DNA nanotechnology using strand-displacement reactions.Nat Chem,2011,3:103-113
    112 Zhang J,Wang L L,Hou M F,et al.A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNAwalkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.Biosens Bioelectron,2018,102:33-40
    113 Lehn J M.Supramolecular chemistry:Receptors,catalysts,and carriers.Science,1985,227:849-856
    114 Lehn J M.Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and selforganization.Angew Chem Int Ed Engl,1990,29:1304-1319
    115 Schwarzenbach H,Hoon D S B,Pantel K.Cell-free nucleic acids as biomarkers in cancer patients.Nat Rev Cancer,2011,11:426-437
    116 Kristensen L S,Mikeska T,Krypuy M,et al.Sensitive melting analysis after real time-methylation specific PCR(SMART-MSP):Highthroughput and probe-free quantitative DNA methylation detection.Nucleic Acids Res,2008,36:e42
    117 Fackler M J,Lopez Bujanda Z,Umbricht C,et al.Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer.Cancer Res,2014,74:2160-2170
    118 García V,García J M,Pe?a C,et al.Free circulating mRNA in plasma from breast cancer patients and clinical outcome.Cancer Lett,2008,263:312-320
    119 Schwarzenbach H,Nishida N,Calin G A,et al.Clinical relevance of circulating cell-free microRNAs in cancer.Nat Rev Clin Oncol,2014,11:145-156
    120 Li Z,Zhou Y,Yang G,et al.Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma.Clin Chim Acta,2019,492:37-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700