用户名: 密码: 验证码:
人工湿地植物种类和多样性对氧化亚氮释放及功能基因丰度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of plant species identity and diversity on nitrous oxide emission and functional gene abundance in constructed wetlands
  • 作者:孙红英 ; 辛全伟 ; 林兴生 ; 罗海凌 ; 林辉 ; 马志慧 ; 兰思仁
  • 英文作者:SUN Hong-ying;XIN Quan-wei;LIN Xing-sheng;LUO Hai-ling;LIN Hui;MA Zhi-hui;LAN Si-ren;National Engineering Research Center of Juncao,Fujian Agriculture and Forestry University;Forestry Postdoctoral Station,Fujian Agriculture and Forestry University;Forestry College,Fujian Agriculture and Forestry University;
  • 关键词:amoA基因 ; nirS基因 ; 生态系统功能 ; 生物多样性 ; 温室气体
  • 英文关键词:amoA gene;;nirS gene;;ecosystem functioning;;biodiversity;;greenhouse gas
  • 中文刊名:生态学杂志
  • 英文刊名:Chinese Journal of Ecology
  • 机构:福建农林大学国家菌草工程技术研究中心;福建农林大学林学博士后科研流动站;福建农林大学林学院;
  • 出版日期:2019-04-23 16:56
  • 出版单位:生态学杂志
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金项目(31500265,31500321,31500394和41501596);; 浙江省自然科学基金(LY19E090001);; 福建农林大学第三批科技创新专项基金项目资助
  • 语种:中文;
  • 页:30-37
  • 页数:8
  • CN:21-1148/Q
  • ISSN:1000-4890
  • 分类号:Q948
摘要
为了解人工湿地处理中碳/氮水平的废水时植物种类及多样性对系统氧化亚氮释放及功能基因丰度的影响,本研究构建了实验尺度的垂直流人工湿地微宇宙实验系统。选取芦苇(Phragmites australis)、千屈菜(Lythrum salicaria)和海寿花(Pontederia cordata) 3种人工湿地常用、景观效果好的植物,在系统中配置了3个单种处理和1个三物种混种处理。结果表明:芦苇、千屈菜与海寿花混种系统的氧化亚氮释放强度(24597.0μg N_2O·m~(-2)·d~(-1))高于三物种单种系统的平均值(11744.8μg N_2O·m~(-2)·d~(-1))(P<0.001),同氧化亚氮释放一样,混种系统的amoA基因绝对丰度(6.33×10~7copies·g~(-1)soil)和nirS基因绝对丰度(1.92×10~6copies·g~(-1)soil)也高于三物种单种系统的平均值(5.70×10~7和1.58×10~6copies·g~(-1)soil)。此外,混种系统的出水硝态氮浓度低于三物种单种系统的平均值(P<0.05),但出水硝态氮浓度、微生物量和植物生物量在单混种系统间无显著差异(P>0.05)。3个单种系统间的氧化亚氮释放强度、amoA基因绝对丰度、nirS基因绝对丰度、出水铵态氮浓度、微生物量和植物生物量存在显著差异(P<0.01),但出水硝态氮无显著差异(P>0.05)。通过植物种类和丰富度对各指标变异的解释度发现,植物种类和丰富度分别解释变异的比率存在一定差异,总体上,植物丰富度对氧化亚氮释放、amoA基因绝对丰度和nirS基因绝对丰度的影响大于植物种类,植物种类对出水硝态氮浓度的影响大于植物丰富度。
        To investigate the effects of plant species identity and diversity on nitrous oxide emission and functional gene abundance under moderate effluent C/N ratio,we constructed a vertical flow constructed wetlands in the laboratory. Three plant species,Phragmites australis,Lythrum salicaria,and Pontederia cordata,which are commonly used in constructed wetlands and with good landscape effects,were selected to establish the monocultures of each species and one threespecies mixture. Results showed that nitrous oxide emissions from the mixtures( 24597. 0 μg N_2O·m~(-2)·d~(-1)) were higher than the mean values of the three monocultures( 11744. 8 μg N2 O·m~(-2)·d~(-1))( P<0.001). Similarly,the absolute abundances of amoA( 6.33×10~7 copies·g~(-1) soil) and nir S( 1.92×10~6 copies·g~(-1) soil) from the mixtures were also higher than the mean values of the monocultures( 5.70×107 and 1.58×106 copies·g~(-1) soil). In addition,the effluent NO_3~--N concentrations in the mixtures were lower than that in the three monocultures( P<0.01),but there was no significant difference in the NH_4~+-N concentration,microbial biomass and plant biomass between the mixtures and the mean values of monocultures( P>0.05). There were significant differences in the nitrous oxide emission,absolute abundance of amoA,absolute abundance of nirS,effluent NH4_~+-N concentration,microbial biomass and plant biomass among the three monocultures,but with no significant difference in the effluent NO_3~--N concentration among the three monocultures. The effects of plant richness on nitrous oxide emission,amoA absolute abundance and nirS absolute abundance were greater than those of species identity,whereas the effects of plant species identity on effluent NO_3~--N concentration were greater than that of plant richness.
引文
刘阳,李丹,孙红英,等.2015.模拟人工湿地植物丰富度对硝氮去除及净温室效应的影响.生态学杂志,34(8):2173-2180.
    Cao HQ,Ge Y,Liu D,et al.2010.Nitrate/ammonium ratios affect ryegrass growth and nitrogen accumulation in a hydroponic system.Journal of Plant Nutrition,34:206-216.
    Chang J,Fan X,Sun HY,et al.2014.Plant species richness enhances nitrous oxide emissions in microcosms of constructed wetlands.Ecological Engineering,64:108-115.
    Du YY,Pan KX,Yu CC,et al.2018.Plant diversity decreases net global warming potential integrating multiple functions in microcosms of constructed wetlands.Journal of Cleaner Production,184:718-726.
    Duffy JE,Richardson JP,France KE.2005.Ecosystem consequences of diversity depend on food chain length in estuarine vegetation.Ecology Letters,8:301-309.
    Fu GP,Hangshen LK,Guo ZP,et al.2017.Effect of plantbased carbon sources on denitrifying microorganisms in a vertical flow constructed wetland.Bioresource Technology,224:214-221.
    Ge Y,Han WJ,Huang CC,et al.2015.Positive effects of plant diversity on nitrogen removal in microcosms of constructed wetlands with high ammonium loading.Ecological Engineering,82:614-623.
    Graham MH,Edwards MS.2017.Statistical significance versus fit:Estimating the importance of individual factors in ecological analysis of variance.Oikos,93:505-513.
    Gu X,Chen K,Fan C.2015.Preliminary evidence of effects of Phragmites australis growth on N2O emissions by laboratory microcosms.Ecological Engineering,83:33-38.
    Han WJ,Shi MM,Chang J,et al.2017.Plant species diversity reduces N2O but not CH4emissions from constructed wetlands under high nitrogen levels.Environmental Science and Pollution Research,24:5938-5948.
    Huang L,Gao X,Guo JS,et al.2012.A review on the mechanism and affecting factors of nitrous oxide emission in constructed wetlands.Environmental Earth Sciences,68:2171-2180.
    IPCC.2014.Synthesis report(contribution of working groups I,II and III to the fifth assessment report of the intergovernmental panel on climate change)//Pachauri RK,Meyer LA,eds.Core Writing Team.IPCC,Geneva,Switzerland.
    Jiang YY,Sun YF,Pan J,et al.2017.Nitrogen removal and N2O emission in subsurface wastewater infiltration systems with/without intermittent aeration under different organic loading rates.Bioresource Technology,244:8-14.
    Lasa B,Frechilla S,Lamsfus C,et al.2001.The sensitivity to ammonium nutrition is related to nitrogen accumulation.Horticulturae Scientia,91:143-152.
    Li J,Zhou JM,Duan ZQ.2007.Effects of elevated CO2concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios.Journal of Environmental Sciences,19:1100-1107.
    Li M,Wu HM,Zhang J,et al.2017.Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent:Effect of C/Nratios.Bioresource Technology,240:157-164.
    Li YH,Li HB,Xu XY,et al.2018.Does carbon-nitrogen ratio affect nitrous oxide emission and spatial distribution in subsurface wastewater infiltration system?Bioresource Technology,250:846-852.
    Liu D,Wu X,Chang J,et al.2012.Constructed wetlands as bioful production systems.Nature Climate Change,2:190-194.
    Luo B,Ge Y,Han WJ,et al.2016.Decreases in ammonia volatilization in response to greater plant diversity in microcosms of constructed wetlands.Atmospheric Environment,142:414-419.
    Maltais-Landry G,Maranger R,Brisson J.2009.Effect of artificial aeration and macrophyte species on nitrogen cycling and gas flux in constructed wetlands.Ecological Engineering,35:221-229.
    Mander,Dotro G,Ebie Y,et al.2014.Greenhouse gas emission in constructed wetlands for wastewater treatment:Areview.Ecological Engineering,66:19-35.
    Maucieri C,Barbera AC,Vymazal J,et al.2017.A review on the main affecting factors of greenhouse gases emission in constructed wetlands.Agricultural and Forest Meteorology,236:175-193.
    Pan J,Qi SY,Sun YF,et al.2017.Nitrogen removal and nitrogen functional gene abundances in three subsurface wastewater infiltration systems under different modes of aeration and influent C/N ratios.Bioresource Technology,241:1162-1167.
    Philippot L,Hallin S,Borjesson G,et al.2009.Biochemical cycling in the rhizosphere having an impact on global change.Plant and Soil,321:61-81.
    Ruan JY,Gerendas J,Hardter R,et al.2007.Effect of nitrogen form and root-zone p H on growth and nitrogen uptake of tea(Camellia sinensis)plants.Annals of Botany,99:301-310.
    Sun HY,Zhang CB,Song CC,et al.2013.The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms.Atmospheric Environment,77:544-547.
    Thomson AJ,Giannopoulos G,Pretty J.2012.Biological sources and sinks of nitrous oxide and strategies to mitigate emissions.Philosophical Transactions of the Royal Society of London,Series B,367:1157-1168.
    Tylova E,Lorenzen B,Brix H,et al.2005.The effects of NH4+and NO3-on growth,resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima.Aquatic Botany,81:326-342.
    Vymazal J.2011.Constructed wetlands for wastewater treatment:Five decades of experience.Environmental Science&Technology,45:61-69.
    Wu J,Zhang J,Jia WL,et al.2009.Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater.Bioresource Technology,100:2910-2917.
    Zhang CB,Liu WL,Wang J,et al.2011.Plant functional group richness affected microbial community structure and function in a full-scale constructed wetland.Ecological Engineering,37:1360-1368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700