用户名: 密码: 验证码:
基于PSO算法的反力架设计与优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Optimization of Counterforce Frame Based on Particle Swarm Optimization Algorithm
  • 作者:王凯 ; 张良辉 ; 孙振川 ; 李凤远 ; 张兵 ; 王超峰
  • 英文作者:WANG Kai;ZHANG Lianghui;SUN Zhenchuan;LI Fengyuan;ZHANG Bing;WANG Chaofeng;State Key Laboratory of Shield Machine and Boring Technology;China Railway Tunnel Group Co.,Ltd.;Shantou Su-Ai Pass Construction Investment and Development Co.,Ltd.;
  • 关键词:盾构隧道 ; 结构优化 ; 反力架 ; 有限元 ; PSO算法
  • 英文关键词:shield tunnel;;structure optimization;;counterforce frame;;finite element analysis;;particle swarm optimization(PSO) algorithm
  • 中文刊名:隧道建设(中英文)
  • 英文刊名:Tunnel Construction
  • 机构:盾构及掘进技术国家重点实验室;中铁隧道局集团有限公司;汕头市苏埃通道建设投资发展有限公司;
  • 出版日期:2019-03-06 08:42
  • 出版单位:隧道建设(中英文)
  • 年:2019
  • 期:02
  • 基金:国家863计划(2012AA041802);; 国家973计划(2014CB046906);; 中国铁路总公司科技研究开发计划(2016G004-A);; 中铁隧道集团科技创新计划(隧研合2017-06)
  • 语种:中文;
  • 页:136-142
  • 页数:7
  • CN:41-1448/U
  • ISSN:2096-4498
  • 分类号:U455.43
摘要
为提升盾构隧道专用反力架轻量化水平和降低制造及运输成本,对其结构进行优化。首先,依据设计的反力架结构建立其有限元模型,并结合工程数据类比确定载荷条件,验算反力架强度及刚度;然后,以所有板材厚度为自变量、反力架总质量为因变量,利用方差分析的方法获得主效应图,确定5种对结构总质量贡献量大的板厚为优化变量;最后,以5种板厚为设计变量,强度、刚度指标作为约束条件,反力架质量最小为优化目标,采用PSO算法进行求解。结果表明:优化后结构的最大应力为252.2 MPa,最大变形为10.6 mm,反力架总质量从305.78 t降至274.85 t,减重比例为10.1%(30.90 t),验证了结构优化的有效性。
        The structure optimization design of counterforce frame used in shield tunnel is carried out to improve its lightweight level and reduce its manufacturing and transportation cost.Firstly,the finite element analysis model of counterforce frame is established based on design structure,the loading conditions are determined by analogy of similar engineering data,and the stress and stiffness of counterforce frame are checked.And then,the main effect diagram is obtained by using variance analysis with taking all plate thickness as independent variables and total weight of the counterforce frame as dependent variable,and 5 kinds of plate thickness effecting on structure total weight largely are set as optimization variables.Finally,the particle swarm optimization(PSO) algorithm is used to calculate by taking 5 kinds of plate thickness as design variables,strength and stiffness as constrains,and minimizing the counterforce frame mass as object.The calculations results show that the maximum stress of the optimized structure is 252.2 MPa,the maximum deformation is 10.6 mm,the total mass of the counterforce frame is reduced from 305.78 t to 274.85 t,and the mass reduction ratio is 10.1%(30.9 t),which proves the effectiveness of the structure optimization.
引文
[1]王吉云.近十年来中国超大直径盾构施工经验[J].隧道建设,2017,37(3):330.WANG Jiyun.Super-large diameter shield tunneling technologies in China in recent decade[J].Tunnel Construction,2017,37(3):330.
    [2]赵宝虎,王燕群,岳澄,等.盾构始发过程反力架应力监测与安全评价[J].工程力学,2009,26(9):105.ZHAO Baohu,WANG Yanqun,YUE Cheng,et al.Stress monitoring and safety evaluation of the counterforce frame during shield originating[J].Engineering Mechanics,2009,26(9):105.
    [3]张子辛.盾构特殊反力架受力特性研究[J].铁道建筑技术,2016,33(2):100.ZHANG Zixin.Force properties of special counter force frame in shield originating[J].Railway Construction Technology,2016,33(2):100.
    [4]李建明,王汉鹏,李术才,等.轨枕路基疲劳试验机加载反力架设计与优化[J].山东大学学报(工学版),2013,43(5):80.LI Jianming,WANG Hanpeng,LI Shucai,et al.Design and optimization of the counterforce frame for sleeper and roadbed fatigue testing machine[J].Journal of Shandong University(Engineering Science),2013,43(5):80.
    [5]史国宏,陈勇,杨雨泽,等.白车身多学科轻量化优化设计应用[J].机械工程学报,2012,48(8):110.SHI Guohong,CHEN Yong,YANG Yuze,et al.BIWarchitecture multidisciplinary light weight optimization design[J].Chinese Journal of Mechanical Engineering,2012,48(8):110.
    [6]郭京波,王旭东,郑丽堃,等.基于多目标遗传算法的复合式盾构刀盘刀具布置优化[J].隧道建设,2017,37(4):517.GUO Jingbo,WANG Xudong,ZHENG Likun,et al.Optimization of layout of disc cutter of composite shield based on multipurpose genetic algorithm[J].Tunnel Construction,2017,37(4):517.
    [7]李斌斌,牛卫中,刘文.某型土压平衡式盾构刀盘的力学分析与结构优化[J].隧道建设,2017,37(9):1187.LI Binbin,NIU Weizhong,LIU Wen.Mechanical analysis and structural optimization of cutterhead of an earth pressure balance(EPB)shield[J].Tunnel Construction,2017,37(9):1187.
    [8]施虎,龚国芳,杨华勇,等.盾构掘进机推进力计算模型[J].浙江大学学报(工学版),2011,45(1):126.SHI Hu,GONG Guofang,YANG Huayong,et al.Determination of thrust force for shield tunneling machine[J].Journal of Zhejiang University(Engineering Science),2011,45(1):126.
    [9]钢结构设计规范:GB 50017-2017[S].北京:中国建筑工业出版社,2018.Standard for classification of steel structures:GB 50017-2017[S].Beijing:China Architecture&Building Press,2018.
    [10]朱剑峰,林逸,史国宏,等.实验设计与近似模型结合下的副车架结构轻量化优化[J].汽车工程,2015,37(2):247.ZHU Jianfeng,LIN Yi,SHI Guohong,et al.Lightweight optimization of vehicle subframe structure based on the combination of DOE and surrogate model[J].Automotive Engineering,2015,37(2):247.
    [11]MI C J,GU Z Q,ZHANG Y,et al.Frame weight and antifatigue co-optimization of a mining dump truck based on Kriging approximation model[J].Engineering Failure Analysis,2016,66(3):99.
    [12]谢然,兰凤崇,陈吉清,等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报,2011,47(4):117.XIE Ran,LAN Fengchong,CHEN Jiqing,et al.Multiobjective optimization method in car-body structure lightweight design with reliability requirement[J].Journal of Mechanical Engineering,2011,47(4):117.
    [13]BENYOUNIS K Y,OLABI A G.Optimization of different welding processes using statistical and numerical approaches:A reference guide[J].Advances in Engineering Software,2008,39(6):483.
    [14]牛文铁,田建伟,王俊强.基于i SIGHT的机床整机结构方案设计与集成优化[J].天津大学学报(自然科学与工程技术版),2016,49(2):120.NIU Wentie,TIAN Jianwei,WANG Junqiang.Schematic design and integrated optimization of machine tool based on i SIGHT[J].Journal of Tianjin University(Science and Technology),2016,49(2):120.
    [15]张江林,庄慧敏,刘俊勇,等.基于CS-PSO算法的电池储能系统多目标优化运行策略[J].工程科学与技术,2018,50(4):193.ZHANG Jianglin,ZHUANG Huimin,LIU Junyong,et al.Multi-objective optimal operation scheme based on CS-PSOalgorithm of battery energy storage system[J].Advanced Engineering Sciences,2018,50(4):193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700