用户名: 密码: 验证码:
面向区域二次污染风险控制的臭氧及其前体物卫星遥感监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Satellite Remote Sensing Monitoring of Ozone and Its Precursors for Regional Secondary Pollution Risk Control
  • 作者:陈良富 ; 王雅鹏 ; 张欣欣 ; 王子峰 ; 陶金花 ; 王莉莉 ; 张莹
  • 英文作者:CHEN Liang-fu;WANG Ya-peng;ZHANG Xin-xin;WANG Zi-feng;TAO Jin-hua;WANG Li-li;ZHANG Ying;State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences;Institute of Aerospace Information,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Institute of Atmospheric Physics,Chinese Academy of Sciences;
  • 关键词:卫星遥感 ; 臭氧 ; 氮氧化物 ; 挥发性有机物 ; 污染防控
  • 英文关键词:Satellite remote sensing;;Ozone;;Nitrogen oxides;;VOCs;;Pollution control
  • 中文刊名:环境监控与预警
  • 英文刊名:Environmental Monitoring and Forewarning
  • 机构:中国科学院遥感与数字地球研究所遥感科学国家重点实验室;中国科学院空天信息研究院;中国科学院大学;中国科学院大气物理研究所;
  • 出版日期:2019-09-30
  • 出版单位:环境监控与预警
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划地球观测与导航领域专项课题基金资助项目(2017YFB0503901)
  • 语种:中文;
  • 页:18-26
  • 页数:9
  • CN:32-1805/X
  • ISSN:1674-6732
  • 分类号:X515;X87
摘要
日益突出的臭氧(O_3)污染已成为继PM2. 5之后我国大气污染防治的又一艰巨任务。由于氮氧化物(NO_x)、挥发性有机物(VOCs)这2种前体物的减排难度较大,且与O_3浓度存在复杂的非线性关系,准确获取O_3及NO_x、VOCs的时空分布对制定有效的防控措施至关重要。基于卫星遥感可定量反演O_3及2种前体物的代表性物种——二氧化氮(NO_2)、甲醛(HCHO)及乙二醛(C_2H_2O_2)的时空分布信息。面向区域O_3污染分析和防控应用,综述了卫星遥感对O_3及NO_2、HCHO、C_2H_2O_2的探测能力,以及利用遥感手段分析区域O_3及其前体物的传输。进而从O_3与NO_x、VOCs关系的角度,分析了利用卫星反演的前体物表征O_3生成风险的可行性。最后对卫星在区域O_3及其前体物监测方面的前景趋势提出了思考。
        The increasingly prominent ozone(O_3) pollution is the second most arduous task of air pollution control after PM2. 5 in China. Considering that the emission reduction of nitrogen oxides(NO_x) and volatile organic compounds(VOCs) is difficult,and there is a complex nonlinear relationship with O_3,so it is important to accurately obtain the spatial and temporal distribution of O_3,NO_x and VOCs for the formulation of effective prevention and control measures. The spatial and temporal distribution of O_3 and two representative species of precursors,nitrogen dioxide(NO_2),formaldehyde(HCHO) and glyoxal(C_2H_2O_2),can be retrieved quantitatively based on satellite remote sensing. Focused on the analysis and control of regional ozone pollution,this paper summarized the detection ability of satellite remote sensing to O_3,NO_2,HCHO and C_2H_2O_2,and analyzed the transport of regional O_3 and its precursors by remote sensing. The feasibility of using satellite inversion precursors to characterize O_3 generation risk was analyzed from the perspective of the relationship between O_3-NO_x-VOCs. Finally,the future trend of satellite in regional O_3 and precursor monitoring was discussed.
引文
[1] CHOI Y,SOURI A H. Seasonal behavior and long-term trends of tropospheric ozone,its precursors and chemical conditions over Iran:A view from space[J]. Atmospheric Environment,2015,106:232-240.
    [2]刘建,吴兑,范绍佳,等.前体物与气象因子对珠江三角洲臭氧污染的影响[J].中国环境科学,2017,37(3):813-820.
    [3]沈劲,陈多宏,蒋斌,等.粤东北地区臭氧与前体物关系[J].环境科学与技术,2018,41(9):90-95.
    [4] CHOI Y,KIM H,TONG D,et al. Summertime weekly cycles of observed and modeled NOx and O3concentrations as a function of satellite-derived ozone production sensitivity and land use types over the Continental United States[J]. Atmospheric Chemistry and Physics,2012,12(14):6291-6307.
    [5] CHOI Y,SOURI A H. Chemical condition and surface ozone in large cities of Texas during the last decade:Observational evidence from OMI,CAMS,and model analysis[J]. Remote Sensing of Environment,2015,168:90-101.
    [6] DAVID L M,NAIR P R. Tropospheric column O3and NO2over the Indian region observed by Ozone Monitoring Instrument(OMI):Seasonal changes and long-term trends[J]. Atmospheric Environment,2013,65:25-39.
    [7] DUFOUR G,EREMENKO M,CUESTA J,et al. Springtime daily variations in lower-tropospheric ozone over east Asia:the role of cyclonic activity and pollution as observed from space with IASI[J]. Atmospheric Chemistry and Physics,2015,15(18):10839-10856.
    [8] WANG W N,CHENG T H,GU X F,et al. Assessing spatial and temporal patterns of observed ground-level Ozone in China[J]. Scientific Reports,2017,7(1):3651.
    [9] WANG T,XUE L,BRIMBLECOMBE P,et al. Ozone pollution in China:A review of concentrations,meteorological influences,chemical precursors,and effects[J]. Science of the Total Environment,2016,575:1582.
    [10] XU J,MA J Z,ZHANG X L,et al. Measurements of ozone and its precursors in Beijing during summertime:impact of urban plumes on ozone pollution in downwind rural areas[J]. Atomospheric Chemistry and Physics,2011,11(23):12241-12252.
    [11] GAO W,TIE X X,XU J M,et al. Long-term trend of O-3 in a mega City(Shanghai),China:Characteristics,causes,and interactions with precursors[J]. Science of the Total Environment,2017,603:425-433.
    [12] DUNCAN B N,YOSHIDA Y,OLSON J R,et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation[J]. Atmospheric Environment,2010,44(18):2213-2223.
    [13] DUNCAN B N,LAMSAL L N,THOMPSON A M,et al. A space-based,high-resolution view of notable changes in urban NOx pollution around the world(2005—2014)[J]. Journal of Geophysical Research Atmospheres,2016,121(2).
    [14] ZHANG L,LEE C S,ZHANG R,et al. Spatial and temporal evaluation of long term trend(2005—2014)of OMI retrieved NO2and SO2concentrations in Henan Province,China[J]. Atmospheric Environment,2017,154:151-166.
    [15] SOURI A H,CHOI Y,JEON W,et al. Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia[J]. Journal of Geophysical Research-Atmospheres,2017,122(4):2474-2492.
    [16] DE SMEDT I,STAVRAKOU T,HENDRICK F,et al. Diurnal,seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations[J]. Atmospheric Chemistry and Physics,2015,15(8):12241-12300.
    [17] PEARCE W,HOLMBERG K,HELLSTEN I,et al. Climate Change on Twitter:Topics,Communities and Conversations about the 2013 IPCC Working Group 1 Report[J]. Plos One,2014,9(4):1-31.
    [18] VANICEK K. Differences between ground Dobson,Brewer and satellite TOMS-8,GOME-WFDOAS total ozone observations at Hradec kralove,Czech[J]. Atmospheric Chemistry and Physics,2006,6(12):5163-5171.
    [19]王庚辰.我国大气臭氧探测技术的进展现状[J].地球科学进展,1991(6):31-36.
    [20] SMIT H G J,STRAETER W,JOHNSON B J,et al. Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber:Insights from the Juelich Ozone Sonde Intercomparison Experiment(JOSIE)[J].J Geophys Res-Atmos,2007,112(D19).
    [21] TARASICK D W,DAVIES J,ANLAUF K,et al. Laboratory investigations of the response of Brewer-Mast ozonesondes to tropospheric ozone[J]. J Geophys Res-Atmos,2002,107(D16).
    [22] BIAN J C,PAN L L,PAULIK L,et al. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon[J]. Geophys Res Lett,2012,39(19):19808.
    [23] TERAO Y,LOGAN J A. Consistency of time series and trends of stratospheric ozone as seen by ozonesonde,SAGE II,HALOE,and SBUV(/2)[J]. J Geophys Res-Atmos,2007,112(D6):D06310.
    [24] BHARTIA P K,MCPETERS R D,FLYNN L E,et al. Solar Backscatter UV(SBUV)total ozone and profile algorithm[J].Atmos Meas Tech,2013,6(10):2533-2548.
    [25] VEEFKIND J P,DE HAAN J R,BRINKSMA E J,et al. Total ozone from the Ozone Monitoring Instrument(OMI)using the DOAS technique[J]. Ieee T Geosci Remote,2006,44(5):1239-1244.
    [26] BAI K X,LIU C S,SHI R H,et al. Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements[J]. Front Earth Sci-Prc,2015,9(3):369-380.
    [27] QU Y N,GOLDBERG M D,DIVAKARLA M. Ozone profile retrieval from satellite observation using high spectral resolution infrared sounding instrument[J]. Adv Atmos Sci,2001,18(5):959-971.
    [28] MULLER M D,KAIFEL A,WEBER M,et al. Neural network scheme for the retrieval of total ozone from Global Ozone Monitoring Experiment data[J]. Appl Optics,2002,41(24):5051-5058.
    [29] DIVAKARLA M,BARNET C,GOLDBERG M,et al. Evaluation of Atmospheric Infrared Sounder ozone profiles and total ozone retrievals with matched ozonesonde measurements,ECMWF ozone data,and Ozone Monitoring Instrument retrievals[J]. J Geophys Res-Atmos,2008,113(D15).
    [30] BOWMAN K W,RODGERS C D,KULAWIK S S,et al. Tropospheric emission spectrometer:Retrieval method and error analysis[J]. Ieee T Geosci Remote,2006,44(5):1297-1307.
    [31] KULAWIK S S,OSTERMAN G,JONES D B A,et al. Calculation of altitude-dependent Tikhonov constraints for TES nadir retrievals[J]. Ieee T Geosci Remote,2006,44(5):1334-1342.
    [32] NASSAR R,LOGAN J A,WORDEN H M,et al. Validation of Tropospheric Emission Spectrometer(TES)nadir ozone profiles using ozonesonde measurements[J]. J Geophys Res-Atmos,2008,113(D15).
    [33] MA P F,CHEN L F,WANG Z T,et al. Ozone Profile Retrievals From the Cross-Track Infrared Sounder[J]. Ieee Transactions on Geoscience and Remote Sensing,2016,54(7):3985-3994.
    [34] GONZALEZ ABAD G,SOURI A H,BAK J,et al. Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space[J/OL]. Journal of Quantitative Spectroscopy and Radiative Transfer. http://doi. org10. 1016/j. jqst. 2019. 04. 030,2019-04-23.
    [35] ZHAO M J,SI F Q,ZHOU H J,et al. Preflight calibration of the Chinese Environmental Trace Gases Monitoring Instrument(EMI)[J]. Atmospheric Measurement Techniques,2018,11(9):5403-5419.
    [36] BOERSMA K F,ESKES H J,DIRKSEN R J,et al. An improved tropospheric NO2column retrieval algorithm for the Ozone Monitoring Instrument[J]. Atmospheric Measurement Techniques,2011,4(9):1905-1928.
    [37] ZARA M,BOERSMA K F,DE SMEDT I,et al. Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV:intercomparison,uncertainty characterisation,and trends[J]. Atmospheric Measurement Techniques,2018,11(7):4033-4058.
    [38] GEFFEN J H G M V,BOERSMA K F,ESKES H J,et al. TROPOMI ATBD of the total and tropospheric NO2data products[R]. De Bilt:KNMI,2016.
    [39] BOERSMA K F,ESKES H J,RICHTER A,et al. Improving algorithms and uncertainty estimates for satellite NO2retrievals:results from the quality assurance for the essential climate variables(QA4ECV)project[J]. Atmos Meas Tech,2018,11(12):6651-6678.
    [40]韩冬.基于差分光学吸收光谱技术的对流层二氧化氮卫星遥感反演研究[D].北京:中国科学院遥感与数字地球研究所,2010.
    [41] LIN J T,MARTIN R V,BOERSMA K F,et al. Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument:effects of aerosols,surface reflectance anisotropy,and vertical profile of nitrogen dioxide[J]. Atmospheric Chemistry and Physics,2014,14(3):1441-1461.
    [42] LIN J T,LIU M Y,XIN J Y,et al. Influence of aerosols and surface reflectance on satellite NO2retrieval:seasonal and spatial characteristics and implications for NOx emission constraints[J]. Atmospheric Chemistry and Physics,2015,15(8):12653-12714.
    [43] LIU M,LIN J,BOERSMA K F,et al. Improved aerosol correction for OMI tropospheric NO2retrieval over East Asia:constraint from CALIOP aerosol vertical profile[J]. Atmos Meas Tech,2019,12(1):1-21.
    [44] GEORGOULIAS A K,VAN DER A R J,STAMMES P,et al.Trends and trend reversal detection in 2 decades of tropospheric NO2satellite observations[J]. Atmos Chem Phys,2019,19(9):6269-6294.
    [45] MARCHENKO S,KROTKOV N A,LAMSAL L N,et al. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument[J]. Journal of Geophysical Research-Atmospheres,2015,120(11):5670-5692.
    [46] LORENTE A,BOERSMA K F,YU H,et al. Structural uncertainty in air mass factor calculation for NO2and HCHO satellite retrievals[J]. Atmospheric Measurement Techniques,2017,10(3):759-782.
    [47] BUCSELA E J,KROTKOV N A,CELARIER E A,et al. A new stratospheric and tropospheric NO2retrieval algorithm for nadirviewing satellite instruments:applications to OMI[J]. Atmospheric Measurement Techniques,2013,6(10):2607-2626.
    [48] DE SMEDT I,MüLLER J-F,STAVRAKOU T,et al. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors[J]. Atmospheric Chemistry and Physics,2008,8(16):4947-4963.
    [49] DE SMEDT I,THEYS N,YU H,et al. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project[J]. Atmospheric Measurement Techniques,2018,11(4):2395-2426.
    [50] WANG Y P,WANG Z F,YU C,et al. Validation of OMI HCHO Products Using MAX-DOAS observations from 2010 to 2016 in Xianghe,Beijing:Investigation of the Effects of Aerosols on Satellite Products[J]. Remote Sensing,2019,11(2):21.
    [51] MILLER C C,ABAD G G,WANG H,et al. Glyoxal retrieval from the Ozone Monitoring Instrument[J]. Atmospheric Measurement Techniques,2014,7(11):3891-3907.
    [52] ALVARADO L M A,RICHTER A,VREKOUSSIS M,et al. An improved glyoxal retrieval from OMI measurements[J]. Atmospheric Measurement Techniques,2014,7(12):5559-5599.
    [53] WITTROCK F,RICHTER A,OETJEN H,et al. Simultaneous global observations of glyoxal and formaldehyde from space[J].Geophysical Research Letters,2006,33(16):5.
    [54] LIU Z,WANG Y H,VREKOUSSIS M,et al. Exploring the missing source of glyoxal(CHOCHO)over China[J]. Geophysical Research Letters,2012,39:L10812.
    [55] CAO H,FU T M,ZHANG L,et al. Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal[J]. Atmospheric Chemistry and Physics,2018,18(20):15017-15046.
    [56] MILLER C C,JACOB D J,ABAD G G,et al. Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument:implications for emissions of aromatic hydrocarbons[J]. Atmospheric Chemistry and Physics,2016,16(7):4631-4639.
    [57] WANG Y P,TAO J H,CHENG L X,et al. A retrieval of glyoxal from OMI over China:Investigation of the effects of tropospheric NO2[J]. Remote Sensing,2019,11(2):19.
    [58] ZHOU D,DING A,MAO H,et al. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China[J]. Environmental Research Letters,2013,8(4):575-591.
    [59] WANG Y P,YU C,TAO J H,et al. Spatio-temporal characteristics of tropospheric ozone and its precursors in Guangxi,South China[J]. Atmosphere,2018,9(9):19.
    [60] WANG T,XUE L,BRIMBLECOMBE P,et al. Ozone pollution in China:A review of concentrations,meteorological influences,chemical precursors,and effects[J]. Science of the Total Environment,2017,575:1582-1596.
    [61] WEI W,LV Z F,LI Y,et al. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing,China[J]. Atmospheric Environment,2018,175:44-53.
    [62] JIN X,HOLLOWAY T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument[J]. Journal of Geophysical Research Atmospheres,2015,120(14):7229-7246.
    [63] LIU H R,LIU C,XIE Z Q,et al. A paradox for air pollution controlling in China revealed by“APEC Blue”and“Parade Blue”[J]. Scientific Reports,2016(6):34408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700