用户名: 密码: 验证码:
黄土丘陵沟壑区典型灌木林地枯落物的蓄积特征及持水性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Accumulation and Water-holding Capacity of Typical Shrub Woodland Litters in Loess Hilly Region
  • 作者:张宝琦 ; 王忠禹 ; 杨艳芬 ; 张娜娜 ; 李永宁
  • 英文作者:Zhang Baoqi;Wang Zhongyu;Yang Yanfen;Zhang Nana;Li Yongning;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation, Northwest A&F University;Institute Soil and Water Conservation, CAS & MWR;
  • 关键词:土壤中枯落物 ; 蓄积量 ; 持水量 ; 黄土丘陵区 ; 灌木
  • 英文关键词:soil litter;;storage;;water-holding capacity;;loess hilly region;;shrub
  • 中文刊名:水土保持通报
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院水利部水土保持研究所;
  • 出版日期:2019-08-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目“基于RUSLE模型的黄土高原草地植被覆盖因子研究”(41771555);国家自然科学基金重点项目“退耕驱动近地表特性变化对侵蚀过程的影响及其动力机制”(41530858),“黄土高原气候和土地利用变化对土壤侵蚀的影响及不确定性分析”(41501301)
  • 语种:中文;
  • 页:82-87
  • 页数:6
  • CN:61-1094/X
  • ISSN:1000-288X
  • 分类号:S714.7
摘要
[目的]对黄土丘陵区不同植被枯落物层持水效能进行研究,为该区植被恢复和水土流失防治提供理论基础。[方法]以柠条、沙棘、狼牙刺、杠柳4种典型灌木林地枯落物层为研究对象,采用室内浸泡法对其水文效应特征进行分析。[结果]①沙棘林地地表枯落物蓄积量最大(1.048 kg/m~2);沙棘林地土壤中枯落物量最大(0.674 kg/m~2);土壤中枯落物占枯落物总蓄积量的20.15%~68.75%,其中柠条和狼牙刺土壤中枯落物高于地表枯落物。②地表枯落物和混入土壤枯落物的持水量均随浸泡时间呈极显著对数函数关系(R~2≥0.745,p<0.01),地表枯落物5 min持水量可以达到最大持水量的40%,且与最大持水量存在显著的幂函数关系(R~2=0.38,p<0.01),可以通过5 min持水量来拟合最大持水量,而混入土壤枯落物并没有呈现这一规律。混入土壤枯落物的持水量显著大于地表,其中地表枯落物有效持水量杠柳最大(2.13 g/g),土壤中枯落物有效持水量柠条最大(1.90 g/g)。③地表枯落物有效拦蓄量沙棘林地最大,为21.16 t/hm~2;土壤中枯落物有效拦蓄量柠条林地最大,为10.01 t/hm~2;土壤中枯落物拦蓄量的校正系数变化范围在0.18~0.42之间。[结论]土壤中枯落物不容忽视,其混入量占枯落物总蓄积量的1/5甚至2/3以上;柠条总有效持水量最大,而受枯落物类型和积累量的影响,沙棘总拦蓄能力最大,具有较强的水源涵养和水土保持功能。
        [Objective] The water-holding efficiency of different vegetation litter was studied in order to provide a theoretical basis for vegetation restoration and soil erosion control in loess hilly region. [Methods] The hydrological effect of the litter layers of four typical shrub woodlands(Caragana korshinskii, Hippophae rhamnoides, Sophora viciifolia and Periploca sepium) were studied, using indoor immersion method. [Results] ① The stock of the litter surface in Hippophae rhamnoides was the largest(1.048 kg/m~2). The amount of litter in the soil of Caragana korshinskii was the largest(0.769 kg/m~2). In addition, the litter in the soil accounted for 20.15 %~55.92 % of the total accumulated amount of litter, and the litter in the soil of Caragana korshinskii and Sophora viciifolia was higher than that of the surface litter. ② The water-holding capacity of litter on the surface and the litter in the soil showed a very significant logarithmic function with the immersion time(R~2≥0.745, p<0.01). The water-holding capacity of surface litter could reach 40% of the maximum water holding capacity in 5 min, and there was a significant power function relationship with the maximum water holding capacity(R~2=0.38, p<0.01), that was to say, the maximum water-holding capacity of the surface litter could be fitted by the water holding capacity of 5 min, but this rule was not found for the litter in the soil. The water-holding capacity of the litter in the soil was significantly higher than the surface. The surface litter of the Periploca sepium had the highest effective water-holding capacity(2.13 g/g). What's more, the litter in the soil of Caragana korshinskii had the highest effective water-holding capacity(1.90 g/g). ③ The surface litter of Hippophae rhamnoides had the largest effective retaining content of 21.16 t/hm~2. The litter in the soil of Caragana korshinskii had the highest effective retaining capacity(10.01 t/hm~2). The correction coefficient of litter retaining content in soil varied from 0.18 to 0.42. [Conclution] The litter in soil could not be ignored, the mixed amount of litter accounted for more than 1/5 or even 2/3 of the total volume of litter. The total effective water-holding capacity of Caragana korshinskii was the largest, while under the influence of litter type and accumulation amount, the total holding capacity of Hippophae rhamnoides was the largest, with strong water conservation and soil and water conservation functions.
引文
[1] 宋小帅,康峰峰,韩海荣,等.太岳山不同郁闭度油松人工林枯落物及土壤水文效应[J].水土保持通报,2014,34(3):102-108.
    [2] 余新晓.水文与水资源学[M].北京:中国林业出版社,1999.
    [3] 叶晶,吴家森,张金池,等.不同经营年限山核桃林地枯落物和土壤的水文效应[J].水土保持通报,2014,34(3):87-91.
    [4] 贾剑波,刘文娜,余新晓,等.半城子流域3种林地枯落物的持水能力[J].中国水土保持科学,2015,13(6):26-32.
    [5] 姜海燕,赵雨森,陈祥伟,等.大兴安岭岭南几种主要森林类型土壤水文功能研究[J].水土保持学报,2007,21(3):149-153,187.
    [6] 宣立辉,康凡,谷建才,等.冀北地区典型林分枯落物层与土壤层的水文效应[J].水土保持研究,2018,25(4):86-91.
    [7] 余新晓.贡嘎山冷杉纯林地被物及土壤持水特性[J].北京林业大学学报,2002,24(3):45-49.
    [8] 王会京,王红霞,谢宇光.太行山不同林型枯落物持水性及生态水文效应研究[J].水土保持研究,2016,23(6):135-139,144.
    [9] 田野宏,满秀玲,李奕,等.大兴安岭北部天然次生林枯落物及土壤水文功能研究[J].水土保持学报,2013,27(6),113-139,144.
    [10] 李学斌,吴秀玲,陈林,等.荒漠草原4种主要植物群落枯落物层水土保持功能[J].水土保持学报,2012,26(4):189-193.
    [11] 刘中奇,朱清科,邝高明,等.半干旱黄土丘陵沟壑区封禁流域植被枯落物分布规律研究[J].草业科学,2010,27(4):20-24.
    [12] Zhou Decheng,Zhao Shuqing,Zhu Chao.The grain for green project induced land cover change in the Loess Plateau:A case study with Ansai County,Shaanxi Province,China[J].Ecological Indicators,2012,23(4):88-94.
    [13] Chen Yiping,Wang Kaibo,Shan Linyi.Balancing green and grain trade[J].Nature Geoscience,2015,10(8):739-741.
    [14] Sharpley A N,Williams J R.EPIC-Erosion/Productivity Impact Calculator(2):User Manual[M].Technical Bulletin-United States Department of Agriculture 4.4,1990.
    [15] 刘宇,张洪江,张友焱,等.晋西黄土丘陵区不同人工林枯落物持水特性研究[J].水土保持通报,2013,33(6):69-74.
    [16] 王忠禹,刘国彬,王兵,等.黄土丘陵区典型植物枯落物凋落动态及其持水性特征[J].生态学报,2019,39(7):1-9.
    [17] 杨荣,杨宏伟,刘丽英,等.不同林分山杏灌木林枯落物持水性能研究[J].西北农林科技大学学报:自然科学版,2017,45(2):104-110,118.
    [18] 王卫军,赵婵璞,张绍轩,等.不同经营措施对油松林枯落物持水性能的影响研究[J].水土保持通报,2013,33(6):103-106.
    [19] 徐学华,崔立志,王锡武,等.不同经营措施对冀北山地华北落叶松林枯落物持水性能的影响[J].水土保持研究,2010,17(3):157-161.
    [20] 田超,杨新兵,李军,等.冀北山地阴坡枯落物层和土壤层水文效应研究[J].水土保持学报,2011,25(2):97-103.
    [21] 石媛,鲁绍伟,陈波,等.河北雾灵山不同密度油松人工林枯落物及土壤水文效应[J].水土保持学报,2014,28(3):92-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700