用户名: 密码: 验证码:
异养鞭毛虫对铜绿微囊藻的生长影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Heterotrophic Flagellates (Paraphysomonas sp.) on Growth Performance of Microcystis aeruginosa
  • 作者:罗晓霞 ; 李长玲 ; 何雪怡 ; 陶德琴 ; 杜振雄
  • 英文作者:LUO Xiao-xia;LI Chang-ling;HE Xue-yi;TAO De-qin;DU Zhen-xiong;College of Fisheries, Guangdong Ocean University;Engineering Technology Research Center for Algae Breeding and Application of Guangdong Province;Shenzhen Research Institute of Guangdong Ocean University;
  • 关键词:铜绿微囊藻 ; 异养鞭毛虫 ; 生长率 ; 抑制率 ; 摄食率
  • 英文关键词:Microcystis aeruginosa;;heterotrophic flagellates;;growth rate;;inhibition rate;;ingestion rate
  • 中文刊名:广东海洋大学学报
  • 英文刊名:Journal of Guangdong Ocean University
  • 机构:广东海洋大学水产学院;广东省藻类养殖及应用工程技术研究中心;广东海洋大学深圳研究院;
  • 出版日期:2019-05-17 16:37
  • 出版单位:广东海洋大学学报
  • 年:2019
  • 期:03
  • 基金:广东省自然科学基金项目(2018A030313212);; 广东海洋大学自然科学研究项目(C17378);广东海洋大学博士启动项目(R17039);; 大学生创新创业训练计划项目(CXXL2019043)
  • 语种:中文;
  • 页:41-48
  • 页数:8
  • CN:44-1635/N
  • ISSN:1673-9159
  • 分类号:X524;X17
摘要
【目的】研究异养鞭毛虫(Paraphysomonas sp.)在不同密度铜绿微囊藻(Microcystis aeruginosa)中的生长状况,探讨其对铜绿微囊藻的摄食及抑制作用。【方法】实验共设6个铜绿微囊藻密度,分别是0、250×10~4、500×10~4、750×10~4、1 000×10~4和2 000×10~4cells/mL,研究异养鞭毛虫与微囊藻的种群数量变化。【结果】异养鞭毛虫主要行异养生活。在铜绿微囊藻密度为250×10~4~2 000×10~4 cells/mL时,异养鞭毛虫对铜绿微囊藻的抑制率为98.00%~99.69%。单个鞭毛虫对微囊藻的摄食率为13~49 cells/d。异养鞭毛虫的密度和生长率随铜绿微囊藻密度的升高而增加,在铜绿微囊藻密度为500×10~4~1000×10~4cells/mL时,异养鞭毛虫密度为21×10~4~24×10~4cells/mL、生长率为0.6~0.74 d~(-1)。但是,铜绿微囊藻密度过高也不利于异养鞭毛虫的种群增长,在2 000×10~4 cells/mL密度时,异养鞭毛虫的生长速率显著低于其它密度组。【结论】异养鞭毛虫能有效抑制铜绿微囊藻种群增长,其生长的最适微囊藻密度为500×10~4~1 000×10~4 cells/mL。
        【Objective】The growth status of heterotrophic flagellates Paraphysomonas sp. in different concentrations of Microcystis aeruginosa and its inhibitory effect on M. aeruginosa were studied.【Method】M. aeruginosa was designated with six different concentrations, which were 0, 250×10~4,500×10~4, 750×10~4, 1 000×10~4 and 2 000×10~4 cells·mL~(-1), respectively.【Result】Paraphysomonas sp. is mainly heterotrophic life and it could inhibit the growth of M. aeruginosa with concentration ranged from 250×10~4 to 2 000 ×10~4 cells·mL~(-1). The inhibition rate was 98 to 99.7%, and the ingestion rate of single flagellate was 13-49 cells·day-1. The number and growth rate of heterotrophic flagellates increased with the increased concentration of M. aeruginosa and reached the highest peak at the concentration of 500×10~4-1 000×10~4 cells·mL~(-1). The number and growth rate of heterotrophic flagellates reached 21×10~4-24×10~4 cells/mL, 0.6-0.74 d~(-1) respectively. However, the excessive concentration of M. aeruginosa did not favor the population growth of heterotrophic flagellates, and the growth rate of heterotrophic flagellates in the 2 000×10~4 cells·ml-1 treatment was significantly lower than that of other concentration treatments.【Conclusion】The flagellates can effectively inhibit the growth of M. aeruginosa, and the optimal M. aeruginosa concentration for the growth of heterotrophic flagellates is 500×10~4 to 1 000×10~4 cells·mL~(-1).
引文
[1]刘正文.湖泊生态系统恢复与水质改善[J].中国水利,2006(17):30-33.
    [2]王朝晖,林秋奇,胡韧,等.广东省水库的蓝藻污染状况与水质评价[J].热带亚热带植物学报,2004,12(2):117-123.
    [3]HOLM,N P,SHAPIRO J.An examination of lipid reserves and the nutritional status of Daphnia pulex fed Aphanizomenon flos-aquae[J].Limnology and Oceanography,1984,29(5):1137-1140.
    [4]WIEGAND C,PFLUGMACHER S.Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review[J].Toxicol Appl Pharm,2005,203(3):201-218.
    [5]JULIAN HARTMANN H.Feeding of Daphnia pulicaria and Diaptomus ashlandi on mixtures of unicellular and filamentous algae[J].Internationale Vereinigung für theoretische und angewandte Limnologie:Verhandlungen,1985,22(5):3178-3183.
    [6]DE BERNARDI R,GIUSSANI G.Are blue-green algae a suitable food for zooplankton?An overview[J].Hydrobiologia,1990,200(1):29-41.
    [7]WIEGAND C,PFLUGMACHER S.Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review[J].Toxicology and Applied Pharmacology,2005,203(3):201-218.
    [8]DE KLUIJVER A,YU J,HOUTEKAMER M,et al.Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu,China,measured by 13C labeling and fatty acid biomarkers[J].Limnology and Oceanography,2012,57(4):1245-1254.
    [9]LUO X,LIU Z,GULATI R D.Cyanobacterial carbon supports the growth and reproduction of Daphnia:an experimental study[J].Hydrobiologia,2015,743(1):211-220.
    [10]YU J,LI Y,LIU X,et al.The fate of cyanobacterial detritus in the food web of Lake Taihu:a mesocosm study using 13C and 15N labeling[J].Hydrobiologia,2013,710(1):39-46.
    [11]GER K A,URRUTIA-CORDERO P,FROST P C,et al.The interaction between cyanobacteria and zooplankton in a more eutrophic world[J].Harmful Algae,2016,54:128-144.
    [12]AZAM F,FENCHEL T,FIELD J,et al.The ecological role of water-column microbes in the sea.Marine ecology progress series,1983.10(3):257-263.
    [13]DALEY R J,MORRIS G,BROWN S.Phagotrophic ingestion of a blue‐green alga by ochromonas[J].The Journal of Protozoology,1973,20(1):58-61.
    [14]COLE G T,WYNNE M J.Endocytosis of Microcystis aeruginosa by Ochromonas danica[J].Journal of Phycology,1974,10(4):397-410.
    [15]ZHANG X,WATANABE M M.Grazing and growth of the mixotrophic chrysomonad Poterioochromonas malhamensis(Chrysophyceae)feeding on algae[J].Journal of Phycology,2001,37(5):738-743.
    [16]MOHAMED Z A,AL-SHEHRI A M.Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans[J].Ecotoxicology and environmental safety,2013,96:48-52.
    [17]ZHANG X,HU H,MEN Y,et al.The effect of Poterioochromonas abundance on production of intra-and extracellular microcystin-LR concentration[J].Hydrobiologia,2010,652(1):237-246.
    [18]KLEIN BRETELER W,SCHOGT N,BAAS M,et al.Trophic upgrading of food quality by protozoans enhancing copepod growth:role of essential lipids[J].Marine Biology,1999,135(1):191-198.
    [19]BEC A,MARTIN-CREUZBURG D,VON ELERT E.Fatty acid composition of the heterotrophic nanoflagellate Paraphysomonas sp.:influence of diet and de novo biosynthesis[J].Aquatic Biology,2010,9(2):107-112.
    [20]YAN C,LI J H,LI J J,et al.A heterotrophic nanoflagellate grazing on the toxic Cyanobacterium Microcystis aeruginosa[J].Annales De Limnologie-International Journal of Limnology:EDPSciences.2009,45(1):23-28.
    [21]黄凌风,潘科,郭丰,等.我国海洋微型异养鞭毛虫研究:现状与展望[J].厦门大学学报(自然科学版),2007,45(2):62-67.
    [22]BASU B,PICK F.Factors related to heterotrophic bacterial and flagellate abundance in temperate rivers[J].Aquatic microbial ecology,1997,12(2):123-129.
    [23]ZHANG X,HU H-Y,MEN Y-J,et al.Feeding characteristics of a golden alga(Poterioochromonas sp.)grazing on toxic cyanobacterium Microcystis aeruginosa[J].Water research,2009,43(12):2953-2960.
    [24]VAN DONK E,CERBIN S,WILKEN S,et al.The effect of a mixotrophic chrysophyte on toxic and colony‐forming cyanobacteria[J].Freshwater Biology,2009,54(9):1843-1855.
    [25]KIM B-R,NAKANO S-I,KIM B-H,et al.Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa[J].Aquatic microbial ecology,2006,45(2):163-170.
    [26]ARNDT H,DIETRICH D,AUER B,et al.Functional diversity of heterotrophic flagellates in aquatic ecosystems[J].The Flagellates:Unity,Diversity and Evolution,2000:240-268.
    [27]ZHANG X,WATANABE M M,INOUYE I.Light and electron microscopy of grazing by Poterioochromonas malhamensis(chrysophyceae)on a range of phytoplankton taxa[J].Journal of Phycology,1996,32(1):37-46.
    [28]王进,李建宏,华秀红,等.吞噬微囊藻的鞭毛虫的培养[J].湖泊科学,2005,17(2):183-187.
    [29]NISHIBE Y,KAWABATA Z I,NAKANO S-I.Grazing on Microcystis aeruginosa by the heterotrophic flagellate Collodictyon triciliatum in a hypertrophic pond[J].Aquatic microbial ecology,2002,29(2):173-179.
    [30]BURKERT U,HYENSTRAND P,DRAKARE S,et al.Effects of the mixotrophic flagellate Ochromonas sp.on colony formation in Microcystis aeruginosa[J].Aquatic ecology,2001,35(1):11-17.
    [31]TAKAMURA N,IWAKUMA T,YASUNO M.Photosynthesis and primary production of Microcystis aeruginosa Kütz.in Lake Kasumigaura[J].Journal of plankton research,1985,7(3):303-312.
    [32]HANAZATO T.Interrelations between Microcystis and Cladocera in the highly eutrophic Lake Kasumigaura,Japan[J].Internationale Revue der gesamten Hydrobiologie und Hydrographie,2007,76(1):21-36.
    [33]HANAZATO T,ARAKAWA T,SAKUMA M,et al.Zooplankton community in Lake Suwa:community structure and its role in the ecosystem[J].Japanese Journal of Limnology,2001,62(2):151-167.
    [34]NANAZATO T,YASUNO M.Population dynamics and production of cladoceran zooplankton in the highly eutrophic Lake Kasumigaura[J].Hydrobiologia,1985,124(1):13-22.
    [35]JIA W,HUANG X,LI C A.Preliminary Study of the Algicidal Mechanism of Bioactive Metabolites of Brevibacillus laterosporus on Oscillatoria in Prawn Ponds[J].The Scientific World Journal,2014,2014:1-11.
    [36]陆开宏,金春华,王扬才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制[J].水产学报,2006,29(6):811-818.
    [37]韩继刚,孟颂东,叶寅,等,藻类污染生物防治新策略[J].微生物学报,2001,41(3):381-385.
    [38]闵智,吴睿若,张琨,等.草履虫对铜绿微囊藻的吞噬能力研究[J].中国给水排水,2011,27(13):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700