用户名: 密码: 验证码:
不同品种紫花苜蓿氮代谢的Cd耐性评价及其鉴定指标筛选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cadmium tolerance evaluation and evaluation index screening in nitrogen metabolism of different alfalfa cultivars
  • 作者:杨姝 ; 祖艳群 ; 李博 ; 毕玉芬 ; 何永美 ; 贾乐 ; 李元
  • 英文作者:YANG Shu;ZU Yan-qun;LI Bo;BI Yu-fen;HE Yong-mei;JIA Le;LI Yuan;College of Resources and Environment, Yunnan Agricultural University;College of Science, Yunnan Agricultural University;Faculty of Animal Science and Technology, Yunnan Agricultural University;
  • 关键词:紫花苜蓿 ; 氮代谢 ; Cd耐性 ; 主成分分析 ; 鉴定指标
  • 英文关键词:alfalfa(Medicago sativa L.);;nitrogen metabolism;;cadmium tolerance;;principal component analysis;;evaluation index
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:云南农业大学资源与环境学院;云南农业大学理学院;云南农业大学动物科学与技术学院;
  • 出版日期:2019-06-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:06
  • 基金:云南省重点研发专项课题:农田土壤重金属污染控制及农产品安全生产关键技术研究(2018BB017);; 国家自然科学基金地区基金项目(31860112);; 环境保护部土壤污染综合治理重大专项(YNBY2016-002);; 云南省农田无公害生产科技创新团队(2017HC015)~~
  • 语种:中文;
  • 页:25-31
  • 页数:7
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:S541.4;X53
摘要
为评估不同品种紫花苜蓿氮代谢对Cd的耐性并筛选可靠评价指标,以20个紫花苜蓿(Medicago sativa L.)品种为植物材料,以0、50 mg·kg~(-1)两个Cd处理浓度为土壤条件,开展温室盆栽试验。测定各品种的株高、生物量、全氮含量、硝态氮含量、脯氨酸含量、游离氨基酸含量、可溶性蛋白含量及氮代谢关键酶(硝酸还原酶、谷氨酰胺合成酶、谷氨酸合酶和谷氨酸脱氢酶)活性指标,计算Cd胁迫后各指标的变化率;分析各指标变化率之间的相关性,并利用主成分分析法和隶属函数法计算各品种的综合评价值(D),建立D值的回归模型并筛选Cd耐性的评价指标。结果显示,Cd胁迫后,11个指标在不同品种中的变化率各不相同,其中增幅最大的指标是品种"WL525HQ"中的硝态氮含量(122.24%),降幅最大的指标则是品种"WL525HQ"中的硝酸还原酶活性(-83.00%)。在株高、生物量、全氮含量、可溶性蛋白含量、脯氨酸含量、硝酸还原酶活性、谷氨酰胺合成酶活性和谷氨酸合酶活性8个指标之间,呈两两显著正相关关系(P<0.05或P<0.01)。20个紫花苜蓿品种中,"巨人"的D值最大(0.89),其氮代谢具有最强的耐Cd性,而"三得利"的D值最小(0.04),其氮代谢Cd耐性最弱。多元线性回归分析筛选出株高、谷氨酰胺合成酶、谷氨酸脱氢酶、硝态氮、硝酸还原酶和生物量6个单项指标作为评价紫花苜蓿氮代谢Cd耐性的主要指标,为紫花苜蓿Cd耐性品种的筛选与鉴定提供依据和数学模型。
        To evaluate cadmium tolerance in nitrogen metabolism of different alfalfa(Medicago sativa L.)cultivars, greenhouse potted experiments of 20 alfalfa cultivars were conducted, with soils treated with 0(control)and 50 mg·kg~(-1) cadmium stress. Eleven evaluation indexes, including plant height, biomass, total nitrogen content, nitrogenous compounds content in different forms(nitrate, proline, free amino acid, and soluble protein), and nitrogen metabolism key enzyme activities(nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase)were measured. The change rates of the above indexes were calculated between the control and treatment groups. Correlations between each two index change rates were analyzed. The comprehensive evaluation value(D)of each cultivar, which was used to evaluate the cadmium tolerance, was calculated based on principal component analysis and membership function method. The multiple linear regression analysis of D was then used to screen the main indexes to establish the mathematic model for the D calculation.The results showed that the change rates of all 11 indicators varied with different cultivars, among which the largest increase(122.24%)was in nitrate content and the largest decrease(-83.00%)was in nitrate reductase activity that were observed in WL525HQ. Correlation analysis showed that there were significant positive pairwise correlations(P<0.05 or P<0.01)among the change rates of plant height, biomass, total nitrogen content, soluble protein content, proline content, nitrate reductase activity, glutamine synthetase activity, and glutamate synthase activity. Out of the 20 alfalfa cultivars, Juren had the largest cadmium tolerance in nitrogen metabolism(D value was 0.89); whereas, Sandeli had the weakest cadmium tolerance(D value was 0.04). Based on the multiple linear regression analysis, plant height, glutamine synthetase activity, glutamate dehydrogenase activity, nitrate reductase activity, nitrate content, and biomass were screened as the main indexes. Based on these six indexes. A regression model was established, which could be used to evaluate cadmium tolerance of alfalfa.
引文
[1]庄国泰.我国土壤污染现状与防控策略[J].中国科学院院刊,2015,30(4):477-483.ZHUANG Guo-tai.Current situation of national soil pollution and strategies on prevention and control[J].Bulletin of Chinese Academy of Sciences,2015,30(4):477-483.
    [2]Murakami M,Ae N,Ishikawa S,et al.Phytoextraction by a high-Cdaccumulating rice:Reduction of Cd content of soybean seeds[J].Environmental Science&Technology,2008,42(16):6167-6172.
    [3]Yong Y,Zhang F S,Li H F,et al.Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils[J].Journal of Environmental Management,2009,90(2):1117-1122.
    [4]Zhou X,Song H,Wang J.Effects of coumarin on net nitrate uptake and nitrogen metabolism in roots of alfalfa(Medicago sativa)[J].Allelopathy Journal,2013,31(2):377-386.
    [5]Wahid A,Ghani A,Ali I,et al.Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean[Vigna radiata(L.)Wilczek]seedlings[J].Journal of Agronomy&Crop Science,2007,193(5):357-365.
    [6]Wang L,Zhou Q,Ding L,et al.Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L.as a newly found cadmium hyperaccumulator[J].Journal of Hazardous Materials,2008,154(1/2/3):818-825.
    [7]Erdal S,Turk H.Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress[J].Environmental and Experimental Botany,2016,132(12):92-99.
    [8]Sharma A,Sainger M,Dwivedi S,et al.Genotypic variation in Brassica juncea(L.)Czern.cultivars in growth,nitrate assimilation,antioxidant responses and phytoremediation potential during cadmium stress[J].Journal of Environmental Biology,2010,31(5):773-780.
    [9]Gouia H,Ghorbal M H,Meyer C.Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean[J].Plant Physiology&Biochemistry,2000,38(7/8):629-638.
    [10]Mobin M.Effects of cadmium-induced oxidative stress on growth and nitrogen assimilation in blackgram[Vigna mungo(L.)Hepper][J].Journal of Agricultural Sciences,2013,58(1):31-39.
    [11]Sharma S S,Dietz K J.The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress[J].Journal of Experimental Botany,2006,57(4):711-726.
    [12]杨姝,李元,毕玉芬,等.紫花苜蓿对Cd胁迫的响应及品种差异研究进展[J].农业环境科学学报,2017,36(8):1453-1461.YANG Shu,LI Yuan,BI Yu-fen,et al.Response and intraspecific differences of alfalfa to cadmium(Cd)stress[J].Journal of Agro-Environment Science,2017,36(8):1453-1461.
    [13]尹国丽,师尚礼,寇江涛,等.Cd胁迫对紫花苜蓿种子发芽及幼苗生理生化特性的影响[J].西北植物学报,2013,33(8):1638-1644.YIN Guo-li,SHI Shang-li,KOU Jiang-tao,et al.Seed germination and physiological and biochemical characteristics of alfalfa under cadmium stress[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(8):1638-1644.
    [14]孙宁骁,宋桂龙.紫花苜蓿对镉胁迫的生理响应及积累特性[J].草业科学,2015,32(4):581-585.SUN Ning-xiao,SONG Gui-long.Physiological response of Medicago Sativa to cadmium stress and accumulation property[J].Pratacultural Science,2015,32(4):581-585.
    [15]韩多红,孟红梅,王进,等.镉对紫花苜蓿种子萌发等生理特性的影响[J].干旱地区农业研究,2007,25(5):151-154,171.HAN Duo-hong,MENG Hong-mei,WANG Jin,et al.Effect of Cd2+on physiological characteristics of alfalfa[J].Agricultural Research in the Arid Areas,2007,25(5):151-154,171.
    [16]Huang H,Xiong Z T.Toxic effects of cadmium,acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings[J].Pesticide Biochemistry and Physiology,2009,94(2/3):64-67.
    [17]Ko?E.Effect of exogenously applied salicylic acid on cadmium chloride(CdCl2)induced oxidative stress and nitrogen metabolism in tomato(Lycopersicon esculentum L.)[J].Turkish Journal of Biology,2014,89(6):573-579.
    [18]Mahmood S,Malik S A,Tabassum A,et al.Biometric and biochemical attributes of alfalfa seedlings as indicators of stress induced by excessive cadmium[J].Journal of Soil Science and Plant Nutrition,2014,14(3):546-553.
    [19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:186-192.LI He-sheng.Principles and techniques of plant physiological biochemical experiments[M].Beijing:Higher Education Press,2000:186-192.
    [20]Laura Flores-Caceres M,Hattab S,Hattab S,et al.Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants[J].Plant Science,2015,233(4):165-173.
    [21]Wang X,Song Y,Ma Y,et al.Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa(Medicago sativa L.)[J].Environmental Pollution,2011,159(12):3627-3633.
    [22]叶芳,刘晓静,张进霞.氮素形态对‘甘农3号'苜蓿不同生育期氮代谢的影响[J].草地学报,2015,23(2):285-293.YE Fang,LIU Xiao-jing,ZHANG Jin-xia.Effects of nitrogen forms on nitrogen metabolism of alfalfa Gannong No.3 varity at different growth stages[J].Acta Agrestia Sinica,2015,23(2):285-293.
    [23]Dhir B,Sharmila P,Saradhi PP.Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline[J].Aquatic Toxicology,2004,66(2):141-145.
    [24]Ma Q,Cao X,Tan X,et al.Effects of cadmium stress on pakchoi(Brassica chinensis L.)growth and uptake of inorganic and organic nitrogenous compounds[J].Environmental and Experimental Botany,2017,137(5):49-57.
    [25]张金彪,周碧青,黄维南.镉胁迫对草莓氮代谢及果实品质的影响[J].热带作物学报,2009,30(11):1624-1629.ZHANG Jin-biao,ZHOU Bi-qing,HUANG Wei-nan.Effect of cadmium stress on nitrogen metabolism and fruit quality of strawberry[J].Chinese Journal of Tropical Crops,2009,30(11):1624-1629.
    [26]何雪娇,余智城,林金水,等.40份热带花卉种质资源的抗冷性综合评价[J].西北农林科技大学学报(自然科学版),2018,16(8):1-9.HE Xue-jiao,YU Zhi-cheng,LIN Jin-shui,et al.Comprehensive evaluation on cold resistance of forty tropical flower germplasm resources[J].Journal of Northwest A&F University,2018,16(8):1-9.
    [27]武辉,侯丽丽,周艳飞,等.不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选[J].中国农业科学,2012,45(9):1703-1713.WU Hui,HOU Li-li,ZHOU Yan-fei,et al.Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes[J].Scientia Agricultura Sinica,2012,45(9):1703-1713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700