用户名: 密码: 验证码:
北京城市与西北远郊地表臭氧浓度梯度移动监测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monitoring ozone concentrations along an urban to rural gradient of Beijing with a mobile vehicle
  • 作者:张红星 ; 韩立建 ; 任玉芬 ; 姚余辉 ; 孙旭 ; 王效科 ; 周伟奇 ; 郑华
  • 英文作者:ZHANG Hongxing;HAN Lijian;REN Yufen;YAO Yuhui;SUN Xu;WANG Xiaoke;ZHOU Weiqi;ZHENG Hua;Beijing Urban Ecosystem Research Station, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences;
  • 关键词:北京 ; 臭氧浓度 ; 移动监测 ; 归一化植被指数
  • 英文关键词:Beijing;;ozone concentrations;;urban to rural gradient;;NDVI
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院生态环境研究中心城市与区域生态国家重点实验室北京城市生态系统研究站;
  • 出版日期:2019-07-04 16:06
  • 出版单位:生态学报
  • 年:2019
  • 期:18
  • 基金:国家自然科学基金项目(71533005,31600333);; 国家重点研发计划(2016YFC0202701,2016YFC0503004,2017YFF0207303,2017YFE0127700)
  • 语种:中文;
  • 页:231-243
  • 页数:13
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X515;X831
摘要
北京城市与区域臭氧浓度逐年升高,对自然生态系统已经构成影响。但地表臭氧在北京城市与远郊梯度空间上的连续递变特征机制尚不清楚。采用移动监测车,搭载臭氧分析仪,选择夏季典型臭氧污染天气,以北京教学植物园为对点,从北京城市中心向西北远郊方向,多点位连续测定地表臭氧浓度。通过分析臭氧浓度和采样点周围归一化植被指数(NDVI)的关系以及典型臭氧污染情况下的天气形势和气团轨迹,探讨北京城市和区域臭氧浓度连续空间变化特征及机制。结果表明:(1)北京西北山区森林区域臭氧浓度显著高于"城市区域",约为城市区域的2.00倍。十三陵是地表臭氧浓度的分界点,从十三陵开始臭氧浓度陡然升高,在西北山区方向保持在高水平。空间上从高到低的顺序是西北山区(254.68μg/m~3)>对点教学植物园(220.89μg/m~3)>城市支路(162.84μg/m~3)>城市快速路和高速路(103.24μg/m~3);(2)植被分布影响臭氧空间格局。在相同时间范围内,臭氧浓度和NDVI正相关,随NDVI增加臭氧浓度呈Logistic增长;(3)西北山区地表臭氧空间变异系数为0.11,城市支路上平均为0.28,城市快速路上为0.26,高速公路上为0.36。山区地表臭氧浓度的空间变异系数最小,高速公路最大,城市快速路、城市支路空间变异较大;(4)大范围均压场、高压后部、低压前部等稳定型天气型易造成南向弱气流,能够把空气污染物输送到西北远郊,但本研究中监测到的西北山区高浓度臭氧并非当天从城区输送而来。北京城市与区域臭氧格局与植被的关系及成因需要深入研究。
        The increase of surface ozone concentrations in summer is raising the risk on ecosystem health. Site sampling based near-surface ozone concentration has been well analyzed in Beijing. However, very scant work has been done to reveal the continuous changing pattern at urban and rural gradient. Thus, in this research, using mobile vehicle equipped with ozone analyzer,we monitored the ozone concentrations in a typical urban-rural gradient, from central urban to north-west rural gradient of Beijing on typical ozone polluted days in summer, meanwhile, ozone concentrations at Beijing Teaching Botanical Garden which worked as the control was monitored and applied. The location including longitude and latitude of mobile vehicle, the ozone concentrations of the samplers and control sites were obtained at the same start time and frequency. Mean NDVI within each site′s 50 meters′ buffer was correlated with the ozone concentration. Additionally, to discern the climatic mechanism of ozone distribution pattern of the monitoring days, we did synoptic type analysis using GrADS 2.1 and analyzed the backward air mass trajectories using HYSPLIT model. Results followed:(1)the ozone concentrations were significant higher in north-west mountains than those in other urban and suburban areas. The sequence is: North-west mountain region(254.68μg/m~3)>control site, Beijing Teaching Botanical Garden(220.89μg/m~3)>branch urban road(162.84 μg/m~3)>urban main road and freeway(103.24 μg/m~3);The landmark is Min tomb and the ozone concentrations north-west to this break point, where is mountains, were about 2.00 times than those measured at the urban and suburban regions.(2) the distribution of plants affects surface ozone pattern. In the same time, ozone concentrations increase with NDVI with a significant Logistic relationship.(3) the spatial variability coefficients of ozone concentrations in mountain regions were lower than those in free way, urban motor road and branch road; the coefficients in mountain area is 0.11, on branch road of urban is 0.28, on main motor road of urban is 0.26, on free way is 0.36;(4) The precursors of ozone in the north-west Mountains were partly from the urban region due to wind. Large scale uniform pressure field, the background of high pressure field, and the forward of low pressure easily lead to weak south or south-east air flow, which pushed air from urban to north-west rural region, and might partly explain the cause of the ozone pollution pattern in summer in Beijing urban and rural region.
引文
[1] Vingarzan R.A review of surface ozone background levels and trends.Atmospheric Environment,2004,38(21):3431- 3442.
    [2] 程念亮,李云婷,张大伟,陈添,魏强,孙彤卉,王步英,富佳明,何乐为,程兵芬,皮帅,马立光,崔继宪,孟.2004—2015年北京市清洁点臭氧浓度变化特征.环境科学,2016,37(8):2847- 2854.
    [3] 邵敏,董东.我国大气挥发性有机物污染与控制.环境保护,2013,41(5):25- 28.
    [4] 马志强,王跃思,张小玲,徐敬.北京城区与下游地区臭氧对比研究.环境科学,2011,32(4):924- 929.
    [5] 王自发,李丽娜,吴其重,高超,李昕.区域输送对北京夏季臭氧浓度影响的数值模拟研究.自然杂志,2008,30(4):194- 198.
    [6] Tang G,Li X,Wang Y,Xin J,Ren X.Surface ozone trend details and interpretations in Beijing,2001- 2006.Atmospheric Chemistry and Physics,2009,9(22):8813- 8823.
    [7] 程念亮,李云婷,张大伟,陈添,王欣,郇宁,陈晨,孟.2014年北京市城区臭氧超标日浓度特征及与气象条件的关系.环境科学,2016,37(6):2041- 2051.
    [8] Xu J,Ma J Z,Zhang X L,Xu X B,Xu F X,Lin W L,Wang Y,Meng W,Ma Z Q.Measurements of ozone and its precursors in Beijing during summertime:impact of urban plumes on ozone pollution in downwind rural areas.Atmospheric Chemistry and Physics,2011,11(23):12241- 12252.
    [9] 安俊琳,王跃思,孙扬.气象因素对北京臭氧的影响.生态环境学报,2009,18(3):944- 951.
    [10] 严茹莎,陈敏东,高庆先,刘婷,胡顺星,高文康.北京夏季典型臭氧污染分布特征及影响因子.环境科学研究,2013,26(1):43- 49.
    [11] 徐敬,张小玲,赵秀娟,徐晓峰,孟伟.夏季局地环流对北京下风向地区O3输送的影响.中国环境科学,2009,29(11):1140- 1146.
    [12] 王占山,李云婷,陈添,张大伟,孙峰,孙瑞雯,董欣,孙乃迪,潘丽波.北京市臭氧的时空分布特征.环境科学,2014,35(12):4446- 4453.
    [13] 陈鹏飞,张蔷,权建农,高扬,黄梦宇.北京地区臭氧时空分布特征的飞机探测研究.环境科学,2012,33(12):4141- 4150.
    [14] 唐贵谦,李昕,王效科,辛金元,胡波,王莉莉,任玉芬,王跃思.天气型对北京地区近地面臭氧的影响.环境科学,2010,31(3):573- 578.
    [15] 张红星,孙旭,姚余辉,万五星,肖扬,孙滨峰,Manning W J,韩春萌,郜世奇,高付元,徐卫华,冯兆忠,阳志云,王效科.北京夏季地表臭氧污染分布特征及其对植物的伤害效应.生态学报,2014,34(16):4756- 4765.
    [16] 黄爱葵,李楠.植物源挥发性有机物的生态意义.亚热带植物科学,2011,40(3):81- 86.
    [17] So-Young Kim,Xiaoyan Jiang,Meehye Lee,Andrew Turnipseed,Alex Guenther,Jong-Choon Kim,Suk-Jo Lee,Saewung Kim.Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul,South Korea.Atmospheric Environment,2013,70:■.Some results on the ozone vertical distribution in atmospheric boundary layer from LIDAR and surface measurements over the Kamienczyk Valley,Poland.Atmospheric Research,2001,58(1):55- 70.
    [19] 苏福庆,高庆先,张志刚,任阵海,杨新兴.北京边界层外来污染物输送通道.环境科学研究,2004,17(1):26- 29,40- 40.
    [20] Meng Z Y,Xu X B,Yan P,Ding G A,Tang J,Lin W L,Xu X D,Wang S F.Characteristics of trace gaseous pollutants at a regional background station in northern China.Atmospheric Chemistry and Physics Discussions,2008,8(3):9405- 9433.
    [21] Trainer M,William E J,Parrish D D,BuhrM P,Allwine E J,Westberg H H,Fehsenfeld F C,Liu S C.Models and observations of the impact of natural hydrocarbons on rural ozone.Nature,1987,329(6141):705- 707.
    [22] Chameides W L,Lindsay R W,Richardson J,Kiang C S.The role of Biogenic Hydrocarbons in Urban Photochemical Smog:Atlanta as a case study.Science,1988,241(4872):1473- 1475.
    [23] 谢扬飏,邵敏,陆思华,刘莹.北京市园林绿地植被挥发性有机物排放的估算.中国环境科学,2007,27(4):498- 502.
    [24] 贾龙,葛茂发,徐永福,杜林,庄国顺,王殿勋.大气臭氧化学研究进展.化学进展,2006,18(11):1565- 1574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700