用户名: 密码: 验证码:
西藏浦桑果铜多金属矿床中酸性岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis and geodynamic settings of the intermediate-acid intrusions related to the Pusangguo copper-dominated polymetallic deposit in Tibet: Constraints from geochronology,geochemistry and Sr-Nd-Pb-Hf isotopes
  • 作者:李壮 ; 郎兴海 ; 章奇志 ; 何亮
  • 英文作者:LI Zhuang;LANG XingHai;ZHANG QiZhi;HE Liang;MNR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences;School of Earth Sciences and Resources,China University of Geosciences;School of Earth Sciences,Chengdu University of Technology;No.6 Geological Party,the Bureau of Geological Exploration and Mineral Resources;
  • 关键词:浦桑果 ; 矽卡岩矿床 ; 埃达克质侵入岩 ; 岩石成因 ; 动力学背景 ; 西藏
  • 英文关键词:Pusangguo;;Skarn deposit;;Adakitic intrusion;;Petrogenesis;;Geodynamic setting;;Tibet
  • 中文刊名:岩石学报
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;中国地质大学(北京)地球科学与资源学院;成都理工大学地球科学学院;
  • 出版日期:2019-03-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(2018YFC0604106);; 中国地质调查局地质调查项目(121201103000150004);; 国家自然科学基金项目(41403040)联合资助
  • 语种:中文;
  • 页:123-145
  • 页数:23
  • CN:11-1922/P
  • ISSN:1000-0569
  • 分类号:P618.2;P588.121;P597.3
摘要
浦桑果矿床位于拉萨地块冈底斯成矿带中段,为侵入岩体与钙质围岩接触带内形成的矽卡岩型高品位铜多金属矿床(Cu@1. 42%,Pb+Zn@2. 83%),是冈底斯成矿带目前唯一一个大型富铜铅锌(钴镍)矿床。本文以浦桑果矿床相关中酸性侵入岩体(黑云母花岗闪长岩和闪长玢岩)为主要研究对象,开展LA-ICP-MS锆石U-Pb年代学、全岩主微量元素、全岩SrNd-Pb及锆石Lu-Hf同位素研究,旨在厘定侵入岩体的形成时代、岩石成因及成岩成矿的动力学背景。LA-ICP-MS锆石U-Pb定年结果表明,黑云母花岗闪长岩和闪长玢岩侵位年龄分别为13. 6~14. 4Ma和13. 6~14. 6Ma,岩体形成时代均属中新世。岩石地球化学特征表明,闪长玢岩和黑云母花岗闪长岩均属高钾钙碱性I型花岗质岩石;岩石普遍具高Sr含量(599×10~(-6)~1616×10~(-6))、高Sr/Y(48. 2~132. 3)和高(La/Yb)N(19. 6~25. 4)比值特征,具低Y(10. 38×10~(-6)~12. 70×10~(-6))和Yb含量(0. 79×10~(-6)~1. 17×10~(-6))特征,表现出埃达克质岩的地球化学属性。全岩稀土元素表现为明显富集轻稀土元素(LREEs)和大离子亲石元素(LILEs),而相对亏损重稀土元素(HREEs)和高场强元素Nb、Ta、P、Ti等(HFSE)。全岩Sr-Nd-Pb及锆石Hf同位素分析结果表明,浦桑果矿床相关中酸性岩石与冈底斯成矿带中新世大多斑岩-矽卡岩矿床紧密相关的埃达克质侵入岩体具相似的同位素组成特征,指示岩石具同源岩浆特征且埃达克质岩浆主要起源于拉萨地块加厚新生下地壳。浦桑果矿床中酸性岩体主要形成于后碰撞伸展的构造背景,因碰撞挤压向后碰撞伸展背景的构造转换,引起印度大陆岩石圈发生拆沉(42~25Ma)及拉萨地块中富集岩石圈地幔发生部分熔融,从而形成富含Cu、Co等基性岩浆熔体底侵加厚新生下地壳(25~18Ma),导致拉萨地块加厚新生下地壳中部分石榴子石角闪岩相发生部分熔融,最终形成闪长质熔体于浦桑果矿区有利构造部位形成具埃达克质属性的中酸性侵入岩体(13~14Ma)和矽卡岩型铜多金属矿体。
        Located in the middle part of the Gangdese metallogenic belt in the Lhasa block,the Pusangguo deposit is a high-grade skarn type copper polymetallic deposit( Cu @ 1. 42%,Pb + Zn @ 2. 83%) formed in the contact zone between magma and the calcareous surrounding rocks and is the only large-scale Cu-Pb-Zn-( Co-Ni) deposit in the Gangdese metallogenic belt. Taking the intermediate-acid intrusions( biotite granodiorite and dioritic porphyrite) as the main research object,this study primarily carried on laser ablation inductively coupled plasma mass spectrometry( LA-ICP-MS) U-Pb chronology on the zircon,whole-rock geochemistry,whole-rock Sr-Nd-Pb and zircon Hf isotopic study,aiming to confirm the timing and discuss the petrogenesis and geodynamic settings of the intrusions in Pusangguo. The results of LA-ICP-MS zircon U-Pb dating show that the biotite granodiorite and dioritic porphyrite were emplaced in 13. 6 ~ 14. 4 Ma and 13. 6 ~ 14. 6 Ma,respectively. The intrusions in Pusangguo deposit were formed in Miocene.Geochemically,these intrusions belong to high-K calc-alkaline I-type granitoids. Both the biotite granodiorite and dioritic porphyrite are characterized by high Sr content( 599 × 10~(-6)~ 1616 × 10~(-6)),high Sr/Y ratio( 48. 2 ~ 132. 3) and high La/Yb ratio( 27. 4 ~ 35. 4),low Y content( 10. 38 × 10~(-6)~ 12. 7 × 10~(-6)) and Yb content( 0. 79 × 10~(-6)~ 1. 17 × 10~(-6)),showing the geochemical properties of adakitic rocks. In terms of whole-rock rare earth elements,the biotite granodiorite and dioritic porphyrite are enriched in light rare earth elements( LREEs) and large-ion-lithophile elements( LILEs),and are depleted in high-field-strength elements( HFSE) such as the element Nb,Ta,P,and Ti. The compositions of Sr-Nd-Pb and zircon Hf isotopes,which are closely related to the intrusions associated with the Miocene porphyry-skarn deposits in the Gangdese metallogenic belt, have similar isotopic composition characteristics,indicating that they probably have the similar magmatic origin and are mainly derived from the thickened juvenile lower crust. The Pusangguo deposit adakitic intrusions were mainly formed in the post-collisional extensional tectonic setting. The transformation of collision extruding tectonic setting to post-collisional stretching background eventually led to the delamination of the continental Indian lithosphere( 42 ~ 25 Ma) and the partial melting of enriched lithospheric mantle in Lhasa block and the formation of the Cu( Co)-bearing basic magmatic melts to underplate the thickened juvenile lower crust in Lhasa block( 25 ~ 18 Ma). Then,the underplating of the basic magmatic melts could directly cause the partial melting of the garnet-bearing amphibole lithofacies in the thickened juvenile lower crust and then form the adakitic dioritic magmatic melts,which eventually formed the adakitic intermediateacid intrusions invaded( 13 ~ 14 Ma) in the favorable structures and the skarn-type copper polymetallic orebodies in Pusangguo deposit.
引文
Allègre CJ and Minster JF.1978.Quantitative models of trace element behavior in magmatic processes.Earth and Planetary Science Letters,38(1):1-25
    Ben Othman D,White WM and Patchett J.1989.The geochemistry of marine sediments,island arc magma genesis,and crust-mantle recycling.Earth and Planetary Science Letters,94(1-2):1-21
    Blichert-Toft J and Albarède F.1999.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters,148:243-258
    Bissig T,Clark AH,Lee JKW and von Quadt A.2003.Petrogenetic and metallogenetic responses to Miocene slab flattening:New constraints from the El Indio-Pascua Au-Ag-Cu belt,Chile/Argentina.Mineralium Deposita,38(7):844-862
    Botcharnikov RE,Linnen RL,Wilke M,Holtz F,Jugo PJ and Berndt J.2011.High gold concentrations in sulphide-bearing magma under oxidizing conditions.Nature Geoscience,4(2):112-115
    Castillo PR.2006.An overview of adakite petrogenesis.Chinese Science Bulletin,51(3):257-268
    Chen JL,Xu JF,Zhao WX,Dong YH,Wang BD and Kang ZQ.2011.Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane:Implications for lower crustal flow beneath the Southern Tibetan Plateau.Lithos,125(3-4):928-939
    Chen JL,Xu JF,Wang BD and Kang ZQ.2012.Cenozoic Mg-rich potassic rocks in the Tibetan Plateau:Geochemical variations,heterogeneity of subcontinental lithospheric mantle and tectonic implications.Journal of Asian Earth Sciences,53:115-130
    Chen JL,Xu JF,Yu HX,Wang BD,Wu JB and Feng YX.2015.Late Cretaceous high-Mg#granitoids in southern Tibet:Implications for the early crustal thickening and tectonic evolution of the Tibetan Plateau?Lithos,232:12-22
    Chung SL,Liu DY,Ji JQ,Chu MF,Lee HY,Wen DJ,Lo CH,Lee TY,Qian Q and Zhang Q.2003.Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet.Geology,31(11):1021-1024
    Chung SL,Chu MF,Zhang YQ,Xie YW,Lo CH,Lee TY,Lan CY,Li XH,Zhang Q and Wang YZ.2005.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism.Earth-Science Reviews,68(3-4):173-196
    Chung SL,Chu MF,Ji JQ,O’Reilly SY,Pearson NJ,Liu DY,Lee TYand Lo CH.2009.The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites.Tectonophysics,477(1-2):36-48
    Cui XL.2013.Research on metallization of Pusangguo polymetallic copper deposit in Tibet,China.Ph.D.Dissertation.Chengdu:Chengdu University of Technology,1-107(in Chinese with English summary)
    Defant MJ and Drummond MS.1990.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,347(6294):662-665
    Defant MJ and Kepezhinskas P.2001.Evidence suggests slab melting in arc magmas.Eos,Transactions American Geophysical Union,82(6):65-69
    Dong X.2008.The geochronology and geochemistry of the Mesozoic and Cenozoic granitoids from southwestern Gangdese belt,Tibet.Master Degree Thesis.Beijing:China University of Geosciences,1-85(in Chinese with English summary)
    Gao YF,Wei RH,Hou ZQ,Tian SH and Zhao RS.2008.Eocene highMg O volcanism in southern Tibet:New constraints for mantle source characteristics and deep processes.Lithos,105(1-2):63-72
    Gao YF,Yang ZS,Santosh M,Hou ZQ,Wei RH and Tian SH.2010.Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet.Lithos,119(3-4):651-663
    Griffin WL,Pearson NJ,Belousova E,Jackson SE,Van Achterbergh E,O’Reilly SY and Shee SR.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64(1):133-147
    Guan Q,Zhu DC,Zhao ZD,Dong GC,Zhang LL,Li XW,Liu M,Mo XX,Liu YS and Yuan HL.2012.Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith.Gondwana Research,21(1):88-99
    Guo F,Nakamuru E,Fan WM,Kobayosh K and Li CW.2007b.Generation of Palaeocene adakitic andesites by magma mixing:Yanji area,NE China.Journal of Petrology,48(4):661-692
    Guo ZF,Wilson M and Liu JQ.2007a.Post-collisional adakites in South Tibet:Products of partial melting of subduction-modified lower crust.Lithos,96(1-2):205-224
    Guo ZF and Wilson M.2012.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting.Gondwana Research,22(2):360-376
    Guo ZF,Wilson M,Zhang ML,Cheng ZH and Zhang LH.2013.Postcollisional,K-rich mafic magmatism in South Tibet:Constraints on Indian slab-to-wedge transport processes and plateau uplift.Contributions to Mineralogy and Petrology,165(6),1311-1340
    Harris NBW,Xu RH,Lewis CL,Hawkesworth CJ and Zhang YQ.1988.Isotope geochemistry of the 1985 Tibet geotraverse,Lhasa to Golmud.Philosophical Transactions of the Royal Society of London,Series A,327:263-285
    Hébert R,Guilmette C,Dostal J,Bezard R,Lesage G,Bédardéand Wang CS.2014.Miocene post-collisional shoshonites and their crustal xenoliths,Yarlung Zangbo Suture Zone southern Tibet:Geodynamic implications.Gondwana Research,25(3):1263-1271
    Hou ZQ,Mo XX,Gao YF,Qu XM and Meng XJ.2003.Adakite,Apossible host rock for porphyry copper deposits:Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile.Mineral Deposits,22(1):1-12(in Chinese with English abstract)
    Hou ZQ,Gao YF,Qu XM,Rui ZY and Mo XX.2004.Origin of adakitic intrusiives generated during Mid-Miocene east-west extension in southern Tibet.Earth and Planetary Science Letters,220(1-2):139-155
    Hou ZQ,Yang ZM,Qu XM,Meng XJ,Li ZQ,Beaudoin G,Rui ZY,Gao YF and Zaw K.2009.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen.Ore Geology Reviews,36(1-3):25-51
    Hou ZQ,Zhang HR,Pan XF and Yang ZM.2011.Porphyry Cu(MoAu)deposits related to melting of thickened mafic lower crust:Examples from the eastern Tethyan metallogenic domain.Ore Geology Reviews,39(1-2):21-45
    Hou ZQ,Zheng YC,Yang ZM,Rui ZY,Zhao ZD,Jiang SH,Qu XMand Sun QZ.2013.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet.Mineralium Deposita,48(2):173-192
    Hou ZQ,Yang ZM,Lu YJ,Kemp A,Zheng YC,Li QY,Tang JX,Yang ZS and Duan LF.2015.A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones.Geology,43(3):247-250
    Hu YB,Liu JQ,Ling MX,Ding W,Liu Y,Zartman RE,Ma XF,Liu DY,Zhang CC,Sun SJ,Zhang LP,Wu K and Sun WD.2015.The formation of Qulong adakites and their relationship with porphyry copper deposit:Geochemical constraints.Lithos,220-223:60-80
    Hu YB,Liu JQ,Ling MX,Liu Y,Ding X,Liu DY and Sun WD.2017.Constraints on the origin of adakites and porphyry Cu-Mo mineralization in Chongjiang,Southern Gangdese,the Tibetan Plateau.Lithos,292-293:424-436
    Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet.Chemical Geology,262(3-4):229-245
    Ji WQ,Wu FY,Liu CZ and Chung SL.2012.Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith.Journal of Asian Earth Sciences,53:82-95
    Jiang ZQ,Wang Q,Li ZX,Wyman DA,Tang GJ,Jia XH and Yang YH.2012.Late Cretaceous(ca.90Ma)adakitic intrusive rocks in the Kelu area,Gangdese Belt(southern Tibet):Slab melting and implications for Cu-Au mineralization.Journal of Asian Earth Sciences,53:67-81
    Jiang ZQ,Wang Q,Wyman DA,Li ZX,Yang JH,Shi XB,Ma L,Tang GJ,Gou GN,Jia XH and Guo HF.2014.Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene(ca.91~30Ma)intrusive rocks in the Chanang-Zedong area,southern Gangdese.Lithos,196-197:213-231
    Kay SM and Mpodozis C.2001.Central Andean ore deposits linked to evolved shallow subduction systems and thickening crust.GSAToday,11(3):4-9
    King J,Harris N,Argles T,Parrish R,Charlier B,Sherlock S and Zhang HF.2007.First field evidence of southward ductile flow of Asian crust beneath southern Tibet.Geology,35(8):727-730
    Kohn MJ and Parkinson CD.2002.Petrologic case for Eocene slab breakoff during the Indo-Asian collision:Comment and reply:REPLY.Geology,30(1):e8
    Le Maitre RW.2002.Igneous Rocks:A Classification and Glossary of Terms.2ndEdition.Cambridge,UK:Cambridge University Press,33-36
    Lee HY,Chung SL,Lo CH,Ji JQ,Lee TY,Qian Q and Zhang Q.2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record.Tectonophysics,477(1-2):20-35
    Leng QF,Tang JX,Zheng WB,Lin B,Tang P,Wang H and Li HF.2016.Zircon U-Pb and molybdenite Re-Os ages of the Lakange porphyry Cu-Mo deposit,Gangdese porphyry copper Belt,southern Tibet,China.Resource Geology,66(2):163-182
    Li JX,Qin KZ,Li GM,Xiao B,Chen L and Zhao JX.2011.Postcollisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,southern Tibet:Melting of thickened juvenile arc lower crust.Lithos,126(3-4):265-277
    Li YL,Li XH,Wang CS,Wei YS,Chen X,He J,Xu M and Hou YL.2017.Miocene adakitic intrusions in the Zhongba terrane:Implications for the origin and geochemical variations of postcollisional adakitic rocks in southern Tibet.Gondwana Research,41:65-76
    Li Z,Wang LQ,Li HF,Danzhen WX and Shi S.2018a.Sulfur and lead isotopic compositions of the Pusangguo Cu-Pb-Zn polymetallic deposit in Tibet:Implications for the source of ore-forming material.Geoscience,32(1):56-65(in Chinese with English abstract)
    Li Z,Tang JX,Wang LQ,Li HF and Liu WY.2018b.Mineralogical characteristics of skarn in the Pusangguo Pb-Zn polymetallic deposit of Tibet and their geological significance.Acta Petrologica et Mineralogica,37(2):241-258(in Chinese with English abstract)
    Liu D,Zhao ZD,Zhu DC,Wang Q,Sui QL,Liu YS,Hu ZC and Mo XX.2011.The petrogenesis of post-collisional potassic-ultrapotassic rocks in Xungba basin,western Lhasa terrane:Constraints from zircon U-Pb geochronology and geochemistry.Acta Petrologica Sinica,27(7):2045-2059(in Chinese with English abstract)
    Liu D,Zhao ZD,Zhu DC,Niu YL,De Paolo DJ,Harrison TM,Mo XX,Dong GC,Zhou S,Sun CG,Zhang ZC and Liu JL.2014.Postcollisional potassic and ultrapotassic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence.Geochimica et Cosmochimica Acta,143:207-231
    Liu D,Zhao ZD,De Paolo DJ,Zhu DC,Meng FY,Shi QS and Wang Q.2017.Potassic volcanic rocks and adakitic intrusions in southern Tibet:Insights into mantle-crust interaction and mass transfer from Indian plate.Lithos,268-271:48-64
    Liu SA,Li SG,He YS and Huang F.2010.Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization.Geochimica et Cosmochimica Acta,74(24):7160-7178
    Liu YS,Hu ZC,Gao S,Günther D,Xu J,Gao CG and Chen HH.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
    Ludwig KR.2003.User’s manual for isoplot 3.0:A geochronological toolkit for Microsoft Excel.Berkeley,CA:Berkeley Geochronology Center,Special Publication,1-71
    Ma L,Wang BD,Jiang ZQ,Wang Q,Li ZX,Wyman DA,Zhao SR,Yang JH,Gou GN and Guo HF.2014.Petrogenesis of the Early Eocene adakitic rocks in the Napuri area,southern Lhasa:Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet.Lithos,196-197:321-338
    Mahéo G,Guillot S,Blichert-Toft J,Rolland Y and Pêcher A.2002.Aslab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet.Earth and Planetary Science Letters,195(1-2):45-58
    Mahoney JJ,Frel R,Tejada MLG,Mo XX,Leat PT and Nagler TF.1998.Tracing the Indian Ocean mantle domain through time:Isotopic results from old West Indian,East Tethyan and South Pacifc Seaoor.Journal of Petrology,39(7):1285-1306
    Maniar PD and Piccoli PM.1989.Tectonic discrimination of granitoids.GSA Bulletin,101(5):635-643
    Martin H,Smithies RH,Rapp R,Moyen JF and Champion D.2005.An overview of adakite,Tonalite-Trondhjemite-Granodiorite(TTG),and sanukitoid:Relationships and some implications for crustal evolution.Lithos,79(1-2):1-24
    Mo XX,Zhao ZD,Deng JF,Dong GC,Zhou S,Guo TY,Zhang SQ and Wang LL.2003.Response of volcanism to the India-Asia collision.Earth Science Frontiers,10(3):135-148(in Chinese with English abstract)
    Mo XX,Hou ZQ,Niu YL,Dong GC,Qu XM,Zhao ZD and Yang ZM.2007.Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet.Lithos,96(1-2):225-242
    Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):49-67
    Mungall JE.2002.Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits.Geology,30(10):915-918
    Owens TJ and Zandt G.1997.Implications of crustal property variations for models of Tibetan Plateau evolution.Nature,387(6628):37-43
    Oyarzun R,Márquez A,Lillo J,Lopez I and Rivera S.2001.Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism.Mineralium Deposita,36(8):794-798
    Pan GT,Wang LQ,Li RS,Yuan SH,Ji WH,Yin FG,Zhang WP and Wang BD.2012.Tectonic evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences,53:3-14
    Peccerillo R and Taylor SR.1976.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81
    Petford N and Atherton M.1996.Na-rich partial melts from newly underplated basaltic crust:The Cordillera Blanca batholith,Peru.Journal of Petrology,37(6):1491-1521
    Rapp RP,Shimizu N,Norman MD and Applegate GS.1999.Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa.Chemical Geology,160(4):335-356
    Reich M,Parada MA,Palacios C,Dietrich A,Schultz F and Lehman B.2003.Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:Metallogenic implications.Mineralium Deposita,38(7):876-885
    Richards JP and Kerrich R.2007.Adakite-like rocks:Their diverse origins and questionable role in metallogenesis.Economic Geology,102(4):537-576
    Richards JP.2011.Magmatic to hydrothermal metal fluxes in convergent and collided margins.Ore Geology Reviews,40(1):1-26
    Sillitoe RH and Thompson JFH.1998.Intrusion-related vein gold deposits:Type,tectono-magmatic settings and difficulties of distinction from orogenic gold deposits.Resource Geology,48(4):237-250
    S9derlund U,Patchett PJ,Vervoort JD and Isachsen CE.2004.The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions.Earth and Planetary Science Letters,219:311-324
    Streck MJ,Leeman WP and Chesley J.2007.High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination,not a primitive mantle melt.Geology,35(4):351-354
    Sun GY,Hu XM,Zhu DC,Hong WT,Wang JG and Wang Q.2015.Thickened juvenile lower crust-derived~90Ma adakitic rocks in the central Lhasa terrane,Tibet.Lithos,224-225:225-239
    Sun SS and Mc Donough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ(eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publication,42(1):313-345
    Tang JX,Zheng WB,Chen YC,Wang DH,Ying LJ and Qin ZP.2013.Prospecting breakthrough of the deep porphyry ore body and its significance in Jiama copper polymetallic deposit,Tibet,China.Journal of Jilin University(Earth Science Edition),43(4):1100-1110(in Chinese with English abstract)
    Tian SH,Yang ZS,Hou ZQ,Mo XX,Hu WJ,Zhao Y and Zhao XY.2017.Subduction of the Indian lower crust beneath southern Tibet revealed by the post-collisional potassic and ultrapotassic rocks in SWTibet.Gondwana Research,41:29-50
    Wang BD,Xu JF,Chen JL,Zhang XG,Wang LQ and Xia BB.2010.Petrogenesis and geochronology of the ore-bearing porphyritic rocks in Tangbula porphyry molybdenum-copper deposit in the eastern segment of the Gangdese metallogenic belt.Acta Petrologica Sinica,26(6):1820-1832(in Chinese with English abstract)
    Wang LQ,Tang JX,Bagas L,Wang Y,Lin X,Li Z and Li YB.2017.Early Eocene Longmala skarn Pb-Zn-Cu deposit in Tibet,China:Geochemistry,fluid inclusions,and H-O-S-Pb isotopic compositions.Ore Geology Reviews,88:99-115
    Wang Q,Wyman DA,Xu JF,Zhao ZH,Jian P and Zi F.2007.Partial melting of thickened or delaminated lower crust in the middle of eastern China:Implications for Cu-Au mineralization.Journal of Geology,115(2):149-161
    Wang Q,Zhu DC,Zhao ZD,Liu SA,Chung SL,Li SM,Liu D,Dai JG,Wang LQ and Mo XX.2014a.Origin of the ca.90Ma magnesia-rich volcanic rocks in SE Nyima,central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone.Lithos,198-199:24-37
    Wang R,Richards JP,Hou ZQ,Yang ZM and Du Frane SA.2014b.Increased magmatic water content:The key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt,Tibet.Economic Geology,109(5):1315-1339
    Wang Y,Tang JX,Wang LQ,Duan JL,Danzhen WX,Li S and Li Z.2018.Petrogenesis of Jurassic granitoids in the west central Lhasa subterrane,Tibet,China:The Geji example.International Geology Reviews,60(9):1155-1171
    Wen DR,Chung SL,Song B,Iizuka Y,Yang HJ,Ji JQ,Liu DY and Gallet S.2008.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:Petrogenesis and tectonic implications.Lithos,105(1-2):1-11
    Williams H,Turner S,Kelley S and Harris N.2001.Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism.Geology,29(4):339-342
    Wu FY,Yang YH,Xie LW,Yang JH and Xu P.2006.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology.Chemical Geology,234(1-2):105-126
    Wu FY,Ji WQ,Wang JG,Liu CZ,Chung SL and Clift PD.2014a.Zircon U-Pb and Hf isotopic constraints on the onset time of IndiaAsia collision.American Journal of Science,314(2):548-579
    Wu S,Zheng YY,Sun X,Liu SA,Geng RR,You ZM,Ouyang HT,Lei D and Zhao ZY.2014b.Origin of the Miocene porphyries and their mafic microgranular enclaves from Dabu porphyry Cu-Mo deposit,southern Tibet:Implications for magma mixing/mingling and mineralization.International Geology Review,56(5):571-595
    Wu S,Zheng YY and Sun X.2016.Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet.Ore Geology Reviews,73:83-103
    Wu YB and Zheng YF.2004.Genesis of zircon and its constraints on interpretation of U-Pb age.Chinese Science Bulletin,49(5):1554-1569
    Xu J,Zheng YY,Sun X and Shen YH.2016.Geochronology and petrogenesis of Miocene granitic intrusions related to the Zhibula Cu skarn deposit in the Gangdese belt,southern Tibet.Journal of Asian Earth Sciences,120:100-116
    Xu JF,Shinjo R,Defant MJ,Wang Q and Rapp RP.2002.Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China:Partial melting of delaminated lower continental crust?Geology,30(12):1111-1114
    Xu JF and Castillo PR.2004.Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:Implications for the origin of the Indian Ocean mantle domain.Tectonophysics,393(1-4):9-27
    Xu WC,Zhang HF,Guo L and Yuan HL.2010.Miocene high Sr/Ymagmatism,South Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication.Lithos,114(3-4):293-306
    Yang HR.2013.The mineralogical characteristics and its genetic significance of Pusangguo copper poly-metal ore deposit in Tibet.Master Degree Thesis.Chengdu:Chengdu University of Technology,1-66(in Chinese with English summary)
    Yang ZM,Hou ZQ,Jiang YF,Zhang HR and Song YC.2011.Sr-Nd-Pb and zircon Hf isotopic constraints on petrogenesis of the Late Jurassic granitic porphyry at Qulong,Tibet.Acta Petrologica Sinica,27(7):2003-2010(in Chinese with English abstract)
    Yang ZM,Hou ZQ,Chang ZS,Li QY,Liu YF,Qu HC,Sun MY and Xu B.2016.Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet:Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones.Lithos,245:243-257
    Yin A and Harrison TM.2000.Geologic evolution of the HimalayanTibetan orogen.Annual Review of Earth and Planetary Sciences,28:211-280
    Zeng YC,Chen JL,Xu JF,Lei M and Xiong QW.2017.Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane:Constraints from geochronology and geochemistry.Gondwana Research,41:51-64
    Zhang HF,Xu WC,Guo JQ,Zong KQ,Cai HM and Yuan HL.2007.The Gangdese-India orogenic event:Evidence from the zircon U-Pb chronology and petrogenesis of the granite.Earth Science(Journal of China University of Geosciences),32(2):155-166(in Chinese with English abstract)
    Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17(4):615-631
    Zhao XY,Yang ZS,Zheng YC,Liu YC,Tian SH and Fu Q.2015.Geology and genesis of the post-collisional porphyry-skarn deposit at Bangpu,Tibet.Ore Geology Reviews,70:486-509
    Zhao ZD,Mo XX,Dilek Y,Niu YL,De Paolo DJ,Robinson P,Zhu DC,Sun CG,Dong GC,Zhou S,Luo ZH and Hou ZQ.2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet.Lithos,113(1-2):190-212
    Zheng WB,Tang JX,Zhong KH,Ying LJ,Leng QF,Ding S and Lin B.2016.Geology of the Jiama porphyry copper-polymetallic system,Lhasa Region,China.Ore Geology Reviews,74:151-169
    Zheng YY,Zhang GY,Xu RK,Gao SB,Pang YC,Cao L,Du AD and Shi YR.2007.Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese,Tibet.Chinese Science Bulletin,52(22):3139-3147
    Zheng YY,Sun X,Gao SB,Zhao ZD,Zhang GY,Wu S,You ZM and Li JD.2014.Multiple mineralization events at the Jiru porphyry copper deposit,southern Tibet:Implications for Eocene and Miocene magma sources and resource potential.Journal of Asian Earth Sciences,79:842-857
    Zheng YY,Sun X,Gao SB,Wu S,Xu J,Jiang JS,Chen X,Zhao ZYand Liu Y.2015.Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt.Journal of Asian Earth Sciences,103:23-39
    Zhu DC,Pan GT,Wang LQ,Mo XX,Zhao ZD,Zhou CY,Liao ZL,Dong GC and Yuan SH.2008.Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt,Tibet,China.Geological Bulletin of China,27(4):458-468(in Chinese with English abstract)
    Zhu DC,Mo XX,Niu YL,Zhao ZD,Wang LQ,Liu YS and Wu FY.2009.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet.Chemical Geology,268(3-4):298-312
    Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
    Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
    Zhu DC,Wang Q and Zhao ZD.2017.Constraining quantitatively the timing and process of continent-continent collision using magmatic record:Method and examples.Science China(Earth Sciences),60(6):1040-1056
    崔晓亮.2013.西藏南木林县浦桑果铜多金属矿床成矿作用研究.博士学位论文.成都:成都理工大学,1-107
    董昕.2008.西藏冈底斯带西南部中新生代花岗岩年代学与地球化学.硕士学位论文.北京:中国地质大学,1-85
    侯增谦,莫宣学,高永丰,曲晓明,孟祥金.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩---以西藏和智力斑岩铜矿为例.矿床地质,22(1):1-12
    李壮,王立强,李海峰,旦真王修,施硕.2018a.西藏浦桑果铜铅锌多金属矿床S、Pb同位素组成及对成矿物质来源的示踪.现代地质,32(1):56-65
    李壮,唐菊兴,王立强,李海峰,刘文元.2018b.西藏浦桑果铅锌多金属矿床矽卡岩矿物学特征及其地质意义.岩石矿物学杂志,37(2):241-258
    刘栋,赵志丹,朱弟成,王青,隋清霖,刘永胜,胡兆初,莫宣学.2011.青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学.岩石学报,27(7):2045-2059
    莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148
    唐菊兴,郑文宝,陈毓川,王登红,应立娟,秦志鹏.2013.西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义.吉林大学学报(地球科学版),43(4):1100-1110
    王保弟,许继峰,陈建林,张兴国,王立全,夏抱本.2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报,26(6):1820-1832
    杨海锐.2013.西藏浦桑果铜多金属矿金属硫化物矿物学特征及成因意义.硕士学位论文.成都:成都理工大学,1-66
    杨志明,侯增谦,江迎飞,张洪瑞,宋玉财.2011.西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究.岩石学报,27(7):2003-2010
    张宏飞,徐旺春,郭建秋,宗克清,蔡宏明,袁洪林.2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学-中国地质大学学报,32(2):155-166
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报,27(4):458-468
    (1)刘祖军.2012.西藏自治区南木林县浦桑果矿区铜多金属矿详查报告.拉萨:西藏自治区矿产勘查开发局第六地质大队

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700