用户名: 密码: 验证码:
新型煤基炭膜电控分离废液中低浓度铅离子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemically Controlled Separation of New Coal-based Carbon Membrane for Low Concentration Pb~(2+) in Waste Liquid
  • 作者:蔡富刚 ; 杜晓 ; 高凤凤 ; 常璐通 ; 张兴芳 ; 郝晓刚
  • 英文作者:CAI Fugang;DU Xiao;GAO Fengfeng;CHANG Lutong;ZHANG Xingfang;HAO Xiaogang;College of Chemistry and Chemical Engineering, Taiyuan University of Technology;
  • 关键词:电控离子交换 ; 煤基炭膜 ; 膜分离 ; 铅离子
  • 英文关键词:ESIX;;coal-based carbon membrane;;membrane separation;;Pb~(2+)
  • 中文刊名:太原理工大学学报
  • 英文刊名:Journal of Taiyuan University of Technology
  • 机构:太原理工大学化学化工学院;
  • 出版日期:2019-07-15
  • 出版单位:太原理工大学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金资助项目(21776191,21706181,21476156)
  • 语种:中文;
  • 页:12-18
  • 页数:7
  • CN:14-1220/N
  • ISSN:1007-9432
  • 分类号:X703
摘要
基于煤基炭膜设计了一种新型电控膜分离系统,在煤基炭膜电极上采用电控离子交换(ESIX)技术,使铅离子进行周期性的吸/脱附过程,并结合液路系统实现废液中低浓度铅离子的连续分离。实验中分别考察了膜电极施加电位、铅离子初始质量浓度、再生液pH值对炭膜铅离子分离效果的影响,进而评价膜电极的分离性能。实验结果表明:膜电极施加电位时,铅离子的吸、脱附效率与未施加电位时相比分别提高了2.2倍和2.3倍;随着膜电极吸附/脱附时所加电位分别增大至-0.5 V和1.1 V,铅离子的吸、脱附效率不断增大,且施加电位时,经炭膜处理后的溶液中铅离子质量浓度为0 mg/L,去除率为100%;随着铅离子初始质量浓度的增加,铅离子的吸附量不断增加;由再生实验可得,再生液pH=3时脱附效率高达99%.
        In this study, we designed a new type of electric separation system based on carbon membrane. With electrochemically switched ion exchange(ESIX) on the membrane electrode, lead ions was adsorbed or desorbed, achieving continuous separation of low concentration lead ions connected with the liquid road system. In the experiment, the effect of electrode potential, initial concentration of lead ions and pH value of the regenerated liquid on the separation were investigated, and the separation performance of the membrane electrode was evaluated. The results show that when the membrane electrode was applied potential, the adsorption and desorption efficiency increased by 2.2 times and 2.3 times respectively compared with the unapplied potential. As adsorption/desorption potential increased to 0.5 V and 1.1 V respectively, the adsorption and desorption efficiency increased, and the lead ion in the solution concentration after carbon membrane treatment was 0 mg/L when potential was applied, the removal rate was 100%. As the initial concentration of lead ions increased, the adsorption capacity of lead ions increased. The regeneration experiment results show the removal efficiency was as high as 99% when pH=3.
引文
[1] OZDES D,DURAN C,SENTURK H B.Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay[J].Journal of Environmental Management,2011,92(12):3082-3090.
    [2] AMARASINGHE B,WILLIAMS R.Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater[J].Chemical Engineering Journal,2007,132(1/2/3):299-309.
    [3] POTGIETER J,POTGIETER-VERMAAK S,KALIBANTONGA P.Heavy metals removal from solution by palygorskite clay[J].Minerals Engineering,2006,19(5):463-470.
    [4] 王瑛.浅述废蓄电池中重金属铅的处理技术研究[J].能源环境保护,2017,31(3):9-12.WANG Y.Discussion on the treatment of heavy metal lead in waste batteries[J].Energy Environmental Protection,2017,31(3):9-12.
    [5] DU X L,SUN X,ZHANG H,et al.A facile potential-induced in-situ ion removal trick:fabrication of high-selective ion-imprinted film for trivalent yttrium ion separation[J].Electrochimica Acta,2015,176(4):1313-1323.
    [6] TOFIGHY M A,MOHAMMADI T.Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J].Journal of Hazardous Materials,2011,185(1):140-147.
    [7] WANG Z,YANG M,HAO X,et al.Enhancement of heavy metals removal efficiency from liquid wastes by using potential-triggered proton self-exchange effects[J].Electrochimica Acta,2014,130(4):40-45.
    [8] DABROWSKI A,HUBICKI ,et al.Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J].Chemosphere,2004,56(2):91-106.
    [9] LILGA M A,ORTH R J,SUKAMTO J P H,et al.Metal ion separations using electrically switched ion exchange[J].Separation & Purification Technology,1997,11(3):147-158.
    [10] JEERAGE K M,SCHWARTZ D T.Characterization of cathodically deposited nickel hexacyanoferrate for electrochemically switched ion exchange[J].Separation Science and Technology,2000,35(15):2375-2392.
    [11] RASSAT S D,SUKAMTO J H,ORTH R J,et al.Development of electrically switched ion exchange process for selective ion separations[J].Separation and Purification Technology,1999,15(3):207-222.
    [12] SUN B,HAO X G,WANG Z D,et al.Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method:Experimental adsorption kinetics analysis[J].Journal of Hazardous Materials,2012,233(10):177-183.
    [13] SUN B,HAO X G,WANG Z D,et al.Continuous separation of cesium based on NiHCF/PTCF electrode by electrochemically switched ion exchange[J].Chinese Journal of Chemical Engineering,2012,20(5):837-842.
    [14] 张忠林,郝晓刚,郑君兰,等.一种连续同步选择性分离回收稀溶液中阴、阳离子的装置及方法:104587835 A[P].2015-05-06.
    [15] ZHANG P L,ZHENG J L,WANG Z D,et al.An in-situ potential-enhanced ion transport system based on FeHCF-PPy/PSS membrane for the removal of Ca2+ and Mg2+ from dilute aqueous solution[J].Industrial & Engineering Chemistry Research,2016,55(21):6194-6203.
    [16] 郝晓刚,杜晓,蔡富刚,等.一种连续电控离子分离装置和工艺:105948188 A[P].2016-09-21.
    [17] 郝晓刚,韩念深,郑君兰,等.一种电控离子选择渗透膜分离工艺:201210229349.2[P].2012-10-10.
    [18] WEIDLICH C,MANGOLD K M,JüTTNER K.Continuous ion exchange process based on polypyrrole as an electrochemically switchable ion exchanger[J].Electrochimica Acta,2005,50(25/26):5247-5254.
    [19] CUI H,LI Q,QIAN Y,et al.Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor[J].Water Research,2011,45(17):5736-5744.
    [20] DU X,MA X,ZHANG P,et al.A novel electric-field-accelerated ion-sieve membrane system coupling potential-oscillation for alkali metal ions separation[J].Electrochimica Acta,2017,258:718-726.
    [21] 王同华,刘淑琴,尤隆渤.煤基管状炭膜支撑体的研究(I)原料性质对支撑体孔结构性能的影响[J].煤炭转化,1998,21(3):73-76.WANG T H,LIU S Q,YOU L B.Preparation of tube carbon membrane supporter with coal precursor part (I) the effect of raw material property on pore structure of the supporter[J].Coal Conversion,1998,21(3):73-76.
    [22] 王同华,刘淑琴,尤隆渤.煤基管状炭膜支撑体的研究(Ⅱ)制备工艺条件对支撑体孔结构性能的影响[J].煤炭转化,1998,21(3):77-81.WANG T H,LIU S Q,YOU L B.Preparation of tube carbon membrane supporter with coal precursor part (Ⅱ) the effect of preparatory technological condition on pore structure of supporter[J].Coal Conversion,1998,21(3):77-81.
    [23] BAKER H,KHALILI F.Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid:temperature and pH dependence[J].Analytica Chimica Acta,2004,516(1/2):179-186.
    [24] 吕常文.微孔滤膜孔隙率的简易测定法介绍[J].膜科学与技术,1989,9(1):42-44.LYU C W.A simple method for the determination of porosity of microporous membrane[J].Membrane Science and Technology,1989,9(1):42-44.
    [25] 中华人民共和国生态环境部.铅、锌工业污染物排放标准:GB 25466-2010[S].北京:中国标准出版社,2010.
    [26] KARTHIKEYAN M,SATHEESHKUMAR K,ELANGO K.Removal of fluoride ions from aqueous solution by conducting polypyrrole[J].Journal of Hazardous Materials,2009,167(1/2/3):300-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700